
Ninth Workshop on Membrane Computing

(WMC9)

Edinburgh, July 28 – July 31, 2008

Pierluigi Frisco, David W. Corne, Gheorghe P̆aun

Editors

Ninth Workshop
on Membrane Computing

(WMC9)

Edinburgh, July 28 – July 31, 2008

Pierluigi Frisco, David W. Corne, Gheorghe P̆aun

Editors

Workshop organised by the
School of Mathematical and Computer Sciences,

Heriot-Watt University

Edinburgh, UK, 2008

Proceedings of the 9th International Workshop on Membrane Computing (WMC9)

Techinical report HW-MACS-TR-0061 at:
School of Mathematical and Computer Sciences,
Heriot-Watt University,
Edinburgh, UK, July 2008.

Edited by: Pierluigi Frisco, David W. Corne, Gheorghe Păun, 2008

Copyright: Authors of the contributions, 2008

Published in July 2008

Preface
———————————————
This volume contains the papers presented at theNinth Workshop on Membrane
Computing, WMC9 , which took place in Edinburgh, UK, from July 28 to July 31,
2008. The first three workshops on Membrane Computing were organized in Curtea de
Argeş, Romania – they took place in August 2000 (with the proceedings published in
Lecture Notes in Computer Science, volume 2235), in August 2001 (with a selection of
papers published as a special issue ofFundamenta Informaticae, volume 49, numbers
1–3, 2002), and in August 2002 (with the proceedings published in Lecture Notes in
Computer Science, volume 2597). The next five workshops were organized in Tarrag-
ona, Spain, in July 2003, in Milan, Italy, in June 2004, in Vienna, Austria, in July 2005,
in Leiden, The Netherlands, in July 2006, and in June 2007, with the proceedings pub-
lished as volumes 2933, 3365, 3850, 4361, and 4860, respectively, of Lecture Notes in
Computer Science.

The 2008 edition of WMC was organized at Heriot-Watt Univerity, by the School
of Mathematical and Computer Sciences, under the auspices of the European Molec-
ular Computing Consortium (EMCC) and IEEE Computational Intelligence Society
Emergent Technologies Technical Committee Molecular Computing Task Force. In this
workshop, several of the invited speakers were from outsidethe Membrane Computing
community. This initiative was meant to allow the bioinformatics and systems biology
communities to learn about and appreciate membrane systemsas modeling platforms,
while at the same time the membrane system community benefitsby learning more
about the challenges present in bioinformatics and systemsbiology to which membrane
systems could be usefully applied.

The 7 invited speakers were: Daniela Besozzi (Milan, Italy), David Gilbert (Glas-
gow, UK), Paulien Hogeweg (Utrecht, The Netherlands), Markus Kirkilionis (War-
wick, UK), Grzegorz Rozenberg (Leiden, The Netherlands), Francisco-José Romero-
Campero (Nottingham, UK), Stephen Wolfram (Champaign - IL -USA). Full papers
associated with the invited talks or only extended abstractare included in the present
volume.

The volume also contains the 26 accepted papers. Each of themwas subject of
three or four referee reports. The program committee consisted of Artiom Alhazov
(Turku, Finland, and Chişinău, Moldova), David Corne (Edinburgh, UK) – Co-chair,
Pilar De La Torre (Durham, USA), George Eleftherakis (Thessaloniki, Greece), Miguel-
Angel Gutiérrez-Naranjo (Sevilla, Spain), Oscar H. Ibarra (Santa Barbara, CA, USA),
Fairouz Kamareddine (Edinburgh, UK), Lila Kari (London, Canada), Alica Kelemenova
(Opava, Czech Republic), Jetty Kleijn (Leiden, The Netherlands), Natalio Krasnogor
(Nottingham, UK), Van Nguyen (Adelaide, Australia), Linqiang Pan (Wuhan, China),
Gheorghe Păun (Bucharest, Romania) – Chair, José Maria Sempere (Valencia, Spain),
Gyorgy Vaszil (Budapest, Hungary), Sergey Verlan (Paris, France), Claudio Zandron

ii Preface

(Milano, Italy). All papers were also read by Pierluigi Frisco and Gheorghe Păun.

During the workshop two prizes: one for thebest paperand another forimportant
contributions to Membrane Computingwere awarded.

The Organizing committee consisted of Pierluigi Frisco – Chair, David Corne –
Co-Chair, and Elizabeth Bain Andrew – Secretary.

The invited papers and a selection of regular papers, improved according to the
discussions held in Edinburgh and additionally refereed, will be published in a special
issue ofLecture Notes in Computer Science.

Details about Membrane Computing can be found atThe P Sytems Webpage:
http://ppage.psystems.eu and its mirrorhttp://bmc.hust.edu.cn/
psystems . The workshop web site, mainly designed by David K. W. Li as his final
year project, ishttp://macs.hw.ac.uk/wmc9 . The logo of the workshop has
been created by Anna Stoutjesdijk.

The workshop was sponsored by: the School of Mathematical and Computer Sci-
ences at Heriot-Watt University, the Engineering and Physical Sciences Research Coun-
cil (EPSRC), the International Journal on Natural Computing, Oxford University Press,
and the Scottish Bioinformatics Forum. Sponsors are listedin no particular order.

The editors warmly thank all who contribute to making WMC9 a success, the orga-
nizing and programme committee, the invited speakers, the authors of the papers, the
lecturers, the reviewers, and all the participants.

Pierluigi Frisco
David Corne

Gheorghe Păun

Editors

Contents
———————————————

Invited Presentations

D. Besozzi:
From computing to modelling with membrane systems: strategies and
applications for biological systems 1

D. Gilbert:
Modelling and analysing the dynamic behaviour of biochemical networks 9

P. Hogeweg:
Multilevel modeling of morphogenesis 11

M. Kirkilionis:
Multi-Scale Modeling and Simulation of Cellular Membrane Transport and
Reaction Systems 19

F.J. Romero-Campero:
A Multiscale Modelling Framework Based On P Systems 21

G. Rozenberg:
Interactive processes in systems based on facilitation andinhibition 23

Regular Presentations

P.A. Abdulla, G. Delzano, L. Van Begin:
On the qualitative analysis of conformon P Systems 25

O. Agrigoroaiei, G. Ciobanu:
Dual P systems 45

A. Alhazov, L. Burtseva, S. Cojocaru, Y. Rogozhin:
Computing solutions of#P-complete problems
by P systems with active membranes 59

A. Alhazov, M. Margenstern, S. Verlan:
Fast synchronization in P systems 71

M. Beyreder, R. Freund:
(Tissue) P systems using non-cooperative rules
without halting conditions 85

iv Contents

M. Cardona, M.A. Colomer, M.J. Pérez-Jiménez, D. Sanuy, A. Margalida:
Modeling ecosystems using P systems: the bearded vulture,
a case study 95

A. Castellini, V. Manca:
MPlab: A computational framework for metabolic P systems 117

D.K. Das:
Simulation of membrane computing models (P systems)
for secure mobile ad-hoc networks 129

J.A. de Frutos, F. Arroyo, A. Arteta:
Usefulness states in new P system communication architecture 135

D. Diaz-Pernil, I. Pérez-Hurtado, M.J. Pérez-Jiménez,A. Riscos-Núñez:
A P-lingua programming environment for membrane computing. 155

M. Gheorghe, F. Ipate:
On testing P systems 173

M.A. Gutierrez-Naranjo, M.J. Pérez-Jiménez:
A spiking neural P system based model for Hebbian learning 189

T. Hinze, R. Fassler, T. Lenser, N. Matsumaru, P. Dittrich:
Event-driven metamorphoses of P systems 209

J. Jack, A. Păun, A. Rodriguez-Patón:
Effects of HIV-1 proteins on the Fas mediated apoptotic signaling cascade.
A computational study of Latent CD4+ T cell activation 227

P. Kefalas, I. Stamatopoulou, G. Eleftherakins, M. Gheorghe:
Transforming state-based models to P systems models in practice 247

A. Leporati, C. Zandron, G. Mauri:
How redundant is your universal computation device? 265

V. Manca:
Enumerating membrane structures 289

V. Manca, R. Pagliarini, S. Zorzan:
Towards an MP model of non-photochemical quenching 297

M. Muskulus:
Applications of page ranking in P systems 309

V. Nguyen, D. Kearney, G. Gioiosa:
A hardware implementation of nondeterministic maximally
parallel object distribution in P systems 327

T.Y. Nishida, T. Shiotani, Y. Takahashi:
Membrane algorithm solving job-shop scheduling problems 363

Contents v

A. Obtulowicz:
On mathematical modeling of anatomical assembly, spatial features,
and functional organization of cortex by application
of hereditary finite sets 371

D. Pescini, P. Cazzaniga, C. Ferretti, G. Mauri:
Toward a wet implementation forτ -DPP . 383

T. Şerbănuţă, Gh. Ştefănescu, G. Roşu:
Defining and Executing P-systems with Structured Data in K 405

J.M. Sempere:
Translating multiset tree automata into P systems 427

M. Umeki, Y. Suzuki:
Chemical reaction simulations using abstract rewriting systems
on multisets with lattice Boltzmann method 439

Author index 451

From computing to modelling with
membrane systems: a critical view

———————————————
Daniela Besozzi

Università degli Studi di Milano, Dipartimento di Informatica e Comunicazione,
Via Comelico 39, 20135 Milano, Italy
besozzi@dico.unimi.it

Extended abstract

Membrane systems were introduced in 1998 as distributed, parallel and nondeter-
ministic computing models, inspired by the compartmentalized structure of eukaryotic
cells and by the flow of solutes and biochemical reactions therein [20]. These cellu-
lar elements are formally represented in the standard definition of membrane systems,
where multisets of objects, distributed inside separate regions, can be modified and com-
municated between adjacent compartments. In particular, the architecture of the cell is
represented by a set of hierarchically embedded regions, each one delimited by a sur-
rounding boundary (called membrane), and all contained inside an external main region
(called the skin membrane). Inside each region, a multiset of objects and a set of evo-
lution rules can be placed. Objects represent the formal counterpart of the molecular
species floating inside cellular compartments (i.e. ions, proteins, etc.), and they are de-
scribed by means of symbols or strings over a given alphabet.Evolution rules represent
the formal counterpart of chemical reactions, and are givenin the form of rewriting
rules, which can operate on the objects (by modifying or moving them between adja-
cent regions), as well as on the compartmentalized structure (by dissolving, creating or
dividing membranes).

With these basic components, a membrane system can perform computations, in the
following way. Starting from an initial configuration, which is defined by the multiset
of objects initially placed inside the compartmentalized structure, and by the sets of
evolution rules, the system evolves according to an established strategy that guides the
application of rules. Usually, a unique clock is assumed to beat the time steps for the
whole system, in such a way that all regions proceed in a synchronized fashion (that
is, the application of rules is carried out simultaneously inside all regions). In the ba-
sic class of membrane systems, evolution rules are applied in a nondeterministic and
maximally parallel manner (we remark here that a rewriting rule is applicable when all
the objects that appear in its left-hand side are available,in the current time step, in-
side the region where the rule is placed). The maximal parallelism of rule application
simply means that every rule that is applicable inside a region has to be applied in that
region. Stated otherwise, the maximal parallelism assuresthat all the objects thatcould
be modified (rewritten, deleted or communicated to an adjacent region) by some rule,

2 From computing to modelling with membrane systems: a critical view

areactually modified by that rule – in this sense, the parallelism of rules application also
determines the maximal consumption of all (modifiable) objects. However, it might be
the case that several rules compete for the same objects, andthere are no enough copies
of such objects to guarantee that all rules will be actually applied. In this situation,
the nondeterminism comes into play: the applied rules are randomly chosen among the
set of applicable rules, inside each region. As a consequence, by nondeterministically
choosing different sets of rules, different evolutions of the system can be generated. So
doing, starting from a fixed initial setting, a tree of computations is obtained. A com-
putation with a membrane system is thus defined as a sequence of transitions between
successive configurations, each (possibly) differing fromthe previous one with respect
to the type or number of objects that occur in the regions, andto the regions structure
possibly modified by the rules. The result of halting computations – that is, finite se-
quences of transitions that end in a configuration where no rule is applicable further on
– is usually read in the form of a set of objects, collected during the computation in
a specified region (or expelled through the skin membrane). Due to the nondetermin-
istic nature of the system, the outputs of the system are given by all possible halting
evolutions which can be reached from the initial configuration.

In ten years of research from the seminal paper by Gheorghe P˘aun, several classes of
membrane systems have been defined by taking inspiration from different aspects of liv-
ing cells (e.g., membrane charge, symport and antiport-based communication through
membranes, catalytic objects, etc.), differentiated types of cells (e.g., neurons) or mul-
ticellular tissues. The computing power and efficiency of these classes have been exten-
sively investigated via standard approaches in the area of formal languages, grammars
and complexity thoeries.

Since it is not within the scope of this work to go into more depth with respect
to the computing aspects of membrane systems, but rather to focus on their adop-
tion as a modelling paradigm for biological systems, we justskip any further detail
about computational issues for the time. We refer indeed thereader to [21] and to the
up-to-date bibliography of membrane systems that can be found at the web address
http://ppage.psystems.eu.

In the very last years, by taking advantage of the biologically inspired aspects of the
underlying structure and formalism, membrane systems havealso been considered for
the modelling of biological systems, and for the investigation of their dynamical prop-
erties by means of properly defined simulators. Several applications have reported the
potentialities of membrane systems for the description of natural systems at different
degrees of complexity. Just to mention a few, these applications range from chemical
and cellular processes, where molecule interactions [25, 22, 29] or the functioning of
specific cell components [1, 6] are modelled, to broader natural systems where inter-
cellular communication mechanisms [2, 32, 22] or interspecies dynamics in ecological
systems [4,5,14] are considered.

Indeed, any model of a biological or chemical system mimics aphysical reality
by adopting a certain level of abstraction, by assuming hypothesis, and by considering
some established principles for the description of the dynamical evolution of the sys-

From computing to modelling with membrane systems: a critical view 3

tem. As for other standard modelling paradigms (see, e.g., [17,34]), different approaches
have been considered within the field of membrane systems: inthe following we briefly
recall only the stochastic-based strategies that drive thesystem evolution (that is, the
application of rules and the handling of objects and regions). We refer to [8,9], and ref-
erences therein, for the development of a deterministic-based strategy. As a preliminary
step, we mention here some of the advantages and limits of membrane systems in their
application to biological systems, and we defer to a forthcoming extension of this work
for a thorough discussion of these description-related andevolution-related issues.

The most attractive features of membrane systems can be devised in some pecu-
liar aspects: the distributed membrane structure, which allows to delimit distinct spatial
places (where different rules can take place and operate onto local objects); the rewrit-
ing form of rules, which provides a good understandability of the description of the
system; the possibility to communicate objects among regions, which grants the flow of
information from a local level to the global level of the system; the parallelism at the
level of regions, which gives the strong capability to keep track of the global function-
ing of the system, and so on. On the other side, some aspects ofmembrane systems –
albeit being powerful features from a computational perspective – are not adequate for
a proper description of many biological systems. For instance, the maximal parallelism
at the level of rules or of objects consumption is surely not lifelike; the nondeterministic
selection of rules indeed homogenizes the physical world where, actually, the events are
not so uniformly accidental; the merely topological placement of regions cannot always
catch the distribution of space, since also physical dimensions or the spatial coordinates
with respect to a reference system matter, and so on.

Some possible solutions have been proposed in membrane systems models to cope
with these limits. Concerning the description-related aspect, for instance, in [4] it was
outlined how the topology of membrane structure is not enough to capture the “geo-
graphical” distribution of fragmented habitats where metacommunity populations live
(the topological membrane structure was there transformedinto a weighted graph-like
structure, where node attributes were also used to describethe region dimensions), while
in [7] it was proposed a parametric bidimensional skeleton to consider the distribution
and movement of (trans)membrane protein populations over amembrane surface.

Another matter is concerned with the evolution-related facet. In this case, finding the
most appropriate way to generate and simulate the correct dynamics of a natural system
is generally far from being an easy question. In membrane systems applications, the
main features that have been disputed about this problem arethe maximal parallel rule
application and the nondeterminism, as well as the associated matter of time. Several
strategies have been adopted: in [24, 25], for instance, theevolution strategy consists
in assigning to each rule a probability value – combinatorially defined according to the
current multiset of objects and to left-hand side of the rule– which dynamically change
from step to step. Probabilities are then used to assign objects to rules and, so doing, the
selection of the rules that will be actually applied becomesmitigated with respect to the
purely randomized manner of membrane systems. All regions then evolve in parallel,
and get synchronized for the communication of objects at theend of each constant-time
step. Yet, the consumption of objects remains maximal with this strategy. To solve this

4 From computing to modelling with membrane systems: a critical view

unwanted drawback, in [4] specific rewriting rules, called mute rules, were introduced to
the aim of arbitrarily reducing the maximal number of modified objects. Another strat-
egy have been considered in [22], where the authors propose an extension of Gillespie’s
stochastic algorithm – a simulation procedure for well mixed, single-volumed reaction
systems [15] – in order to deal with compartmentalized systems. Here, the probability
associated to each rule is used to evaluate the rule’s “waiting time”, and then only those
rules that have the same minimal waiting times (if more than one exists) with respect to
all other rules are applied, but only one rule inside each region is allowed to take place.
In this case, steps do not have a constant time unit, but lastsas much as the waiting
time of the applied rule. Obviously, with this strategy, rules belonging to different re-
gions that have distinct waiting times cannot be applied in parallel, otherwise it would
not be possible both to define a unique time line for the whole system, and to correctly
handle the communication of objects between regions. In this sense, the evolution of
the system resembles more a sequential rather than parallelevolution mode, thus los-
ing a global view on the system. This problem does not arise, on the contrary, when
using the strategy proposed in [12] (see also [3] for a comprehensive description of this
approach), which extends the stochasticτ -leaping algorithm given in [10]. The func-
tioning of this system, calledτ -DPP, provides that all regions proceed simultaneously,
more than one rule can be applied inside each region, the communication of objects can
be handled in a straightforward way, and there exists a global time stream for the whole
system. Therefore, the accuracy and efficiency ofτ -leaping algorithm is integrated with,
and takes advantage of, the most powerful features of membrane systems. Finally, yet
another stochastic strategy has been introduced in [11] where, by closely resembling
Gillespie’s algorithm, the membrane structure and the evolution rules are transformed
in such a way that the whole system reduces to a single region,where just one rule at a
time can be applied.

The majority of applications of membrane systems for biological systems concerned
modelling aspects and simulation approaches, but relatively few research has been ded-
icated so far to develop theories and tools to perform theanalysisof the system, or to
test the effectiveness and goodness of the proposed model. We sketch hereby two ap-
proaches that already appeared in this direction, and then we point out two other issues
that are still missing in the membrane systems area, but which are surely of fundamen-
tal importance to advocate that this new modelling framework is strong enough as other
modelling paradigms.

As a general procedure, in order to investigate the dynamicsof a modelled system,
one set of initial conditions is fixed at a time, and the evolution of the system is then
simulated. This process can then be repeated for any other choice of initial setting –
especially for testing several conditions that can intervene on the system behaviour –
which seem to be plausible or interesting from a biological or a computational point
of view. The whole study can thus be time consuming, and the exhaustive sampling of
too many conditions might become impractical. Moreover, when stochastic simulation
frameworks are used, yet another difficulty arises: when looking for dynamical proper-
ties, it is not immediate to partition the system’s phase space in homogeneous subspaces

From computing to modelling with membrane systems: a critical view 5

which exhibits the same behavior. The first approach to overcome these drawbacks has
been developed in [23]: it is a simulation tool that simultaneously generates the evolu-
tions (inside single regions of a membrane system) for an entire set of initial conditions,
hence allowing to quickly predict the behavior of the regionunder investigation. The
tool is based on the construction of a grid, whose vertices correspond to different initial
multisets of objects that can be placed inside a fixed region,which is then used to de-
fine a vector field over the phase space of that region. The vector field represents all the
single-time step evolutions of the grid multisets, and can be exploited to characterize
the stochastic nature of the system by identifying dynamical points (stable or unstable
points) or the local behavior of the region (quasi-periodicor periodic orbits).

On the other side, in some cases performing simulations of a system is not suitable,
for instance when a high computational burden is required, or when we are interested
in revealing dynamical properties of the system without having an appropriate knowl-
edge on the initial conditions that might generate those dynamics. In these cases, if it
is plausible to assume that most of the information of the system can be stored in a
stoichiometric matrix, then the system can be represented by means of an equivalent
mathematical (linear) system. So doing, it is possible to exploit well established theo-
ries to extract, from the stoichiometric matrix, the information about the topology of the
system’s phase space. This approach has been adopted in [19]where, in the context of
Markov chains theory, the phase space of (sequential) membrane systems can be par-
titioned into sets of configuration states, which allow to recognize dynamical patterns
without performing simulations. In particular, a set of minimal communicating classes
(or cycles) that “generate” the phase space is derived, and their mutual reachability is
studied.

Despite the existence of these two approaches, a thorough treatment able to cope
with the analysis of dynamical properties of generic membrane systems (with many re-
gions, different communication mechanisms, stochastic evolution strategies, etc.) is still
to be fully developed. Besides, what is still missing in membrane systems are operable
and effective tools which can handle the lack of quantitative data, and the presence of
uncertainties in the current knowledge of biological systems. It is well known that in
theoretical or simulation-based studies of biological systems, several factors – such as
species concentrations or molecule copy numbers, binding constants, transcription and
translation rates, etc. – represent a quantitative, indispensable information for a proper
investigation of the system dynamics. Most of the times, theexperimental values of
these factors are not available or else ambiguous, since carrying out their measurements
in vivo or in vitro, at the microscopic levels, can be tangling or impossible [27]. For
instance, the cellular components involved in transcription and translation mechanisms
cannot be isolated and studied separately from the cell, andmany other small-scale
processes are accessible only throughin situ fluorescence methods (that is, imaging
methods of proteins tagged with fluorescent markers). The lack of these information, or
the inaccuracy about the available data, have a direct effect on the computational study
of biological systems: they result in the challenging problem of assigning biologically
plausible values to all the variables defined within a model.

In some cases, the values of some parameters of a system can beestimated fromin

6 From computing to modelling with membrane systems: a critical view

vitro experiments at the macroscopic level (e.g., by fitting the dynamics derived through
equations of mass-action law against the concentration curves that result from these ex-
periments), or by assuming more or less strict analogies with other processes or organ-
isms for which more data and knowledge are available. In general, anyway, modellists
have to handle the presence of uncertainties at various levels, which are not limited only
to the numerical values associated to molecular species andto reaction kinetics, but
can also pertain to the structure of the system (i.e., to reveal which components are the
most significant, and how they do interact each other). Having to deal with this gen-
eral scarcity of knowledge, it results very hard to debate for the “validity” of a model
built for a biological system, and indeed it would be more appropriate to propose the
model as a corroboration (or a falsification) of the built-indescription of the reality that
it provides.

For this purpose, two parallel and complementary approaches can be undertaken.
On the one hand, several optimization techniques can be usedto “calibrate” the model,
that is, to find out the unknown parameter values which allow to reproduce the ex-
pected biological dynamics in the best possible way. The parameter estimation methods
usually attack this calibration problem by minimizing a cost function (i.e., a distance
measure) which defines how good is the fitting of the predictedvalues with respect to
the experimentally measured values of the same factors, or with respect to the expected
biological behaviour of the system (we refer the interestedreader to [27, 28, 33, 18] for
some applications in Systems Biology of parameter estimation methods). On the other
hand, sensitivity analysis techniques (see [30, 31] and references therein) can help in
understanding how much the uncertainty in the model outcomeis determined by the
uncertainties, or by the variations, of the model factors (components, reactions and re-
spective parameters). Moreover, the analysis of sensitivities of the model output can also
reveal which input factors bring about the most striking effects on the system behaviour,
and can thus be assumed to be good control points of the systemdynamics. Tradition-
ally, sensitivity analysis has been diffusely applied to deterministic continuous models,
by means of (derivative-based) local or global methods, though theories and tools for
parametric sensitivity of discrete stochastic systems have recently been defined [26,16].
Taking advantage of these usable theories, it would be surely convenient to develop
similar analysis methodologies within the field of membranesystems, especially when
they are used for the investigation of biological systems.

Bibliography

[1] I.I. Ardelean, D. Besozzi, M.H. Garzon, G. Mauri, S. Roy,P system models for
mechanosensitive channels,Applications of Membrane Computing(G. Ciobanu,
G. Păun, M.J. Pérez-Jiménez Eds.), Springer–Verlag, Berlin, 43–81, 2005.

[2] F. Bernardini, M. Gheorghe, N. Krasnogor, R.C. Muniyandi, M.J. Pérez-Jiménez,
F.J. Romero-Campero, On P systems as a modelling tool for biological systems,
Membrane Computing, International Workshop, WMC6(R. Freund et al. Eds.),
LNCS 3850, 114–133, 2006.

[3] D. Besozzi, P. Cazzaniga, D. Pescini, G. Mauri, A multivolume approach to stochas-
tic modelling with membrane systems, submitted.

From computing to modelling with membrane systems: a critical view 7

[4] D. Besozzi, P. Cazzaniga, D. Pescini, G. Mauri, Modelling metapopulations with
stochastic membrane systems,BioSystems, 91, 3, 499-514, 2008.

[5] D. Besozzi, P. Cazzaniga, D. Pescini, G. Mauri, Seasonalvariance in P system
models for metapopulations,Progress in Natural Science, 17, 4, 392–400, 2007.

[6] D. Besozzi, G. Ciobanu, A P system description of the sodium–potassium pump.
Proc. of 5th Membrane Computing International Workshop (WMC04)(G. Mauri,
Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa Eds.), LNCS 3365,
210-223, 2005.

[7] D. Besozzi, G. Rozenberg. Formalizing spherical membrane structures and mem-
brane proteins populations,Membrane Computing, 7th International Workshop,
WMC 2006(H.J. Hoogeboom, Gh. Păun, G. Rozenberg, A. Salomaa Eds.),Lei-
den, LNCS 4361, 18–41, 2006.

[8] L. Bianco, Membrane Models of Biological Systems. PhD Thesis, University of
Verona, 2007.

[9] L. Bianco, Psim: a computational platform for metabolicP systems,Proceedings
of the 8th Workshop on Membrane Computing (WMC8)(G. Eleftherakis, P. Ke-
falas, G. Păun Eds.), 1–20, 2007.

[10] Y. Cao, D.T. Gillespie, L.R. Petzold, Efficient step size selection for the tau-
leaping simulation method,Journ. Chem. Phys., 124:044109, 2006.

[11] M. Cavaliere, S. Sedwards, Modelling cellular processes using membrane systems
with peripheral and integral proteins,Fourth Intern. Conference on Computational
Methods in Systems Biology (CMSB2006), LNBI 4210, 108–126, 2006.

[12] P. Cazzaniga, D. Pescini, D. Besozzi, G. Mauri, Tau leaping stochastic simulation
method in P systems.Membrane Computing. 7th International Workshop, WMC
2006(H.J. Hoogeboom, G. Păun, G. Rozenberg, A. Salomaa Eds.), LNCS 4361,
298–313, 2006.

[13] S. Cheruku, A. Păun, F.J. Romero-Campero, M.J. Pérez-Jiménez, O.H. Ibarra,
Simulating FAS-induced apoptosis by using P systems,Progress in Natural Sci-
ence, 17, 4, 424–431, 2007.

[14] F. Fontana, V. Manca, Predator-prey dynamics in P systems rules by metabolic
algorithm,BioSystems, 91, 3, 545–557, 2008.

[15] D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions,Journ.
Phys. Chem., 81:2340–2361, 1977.

[16] R. Gunawan, Y. Cao, L. Petzold, F.J. Doyle III, Sensitivity analysis of discrete
stochastic systems,Biophys. J., 88, 2530–2540, 2005.

[17] T.C. Meng, S. Somani, P. Dhar, Modeling and simulation of biological systems
with stochasticity,In Silico Biology, 4:0024, 2004.

[18] C.G. Moles, P. Mendes, J.R. Banga, Parameter estimation in biochemical path-
ways: a comparison of global optimization methods, Genome Research, 13, 2467–
2474, 2003.

[19] M. Muskulus, D. Besozzi, R. Brijder, P. Cazzaniga, S. Houweling, D. Pescini, G.
Rozenberg, Cycles and communicating classes in membrane systems and molec-
ular dynamics,Theoretical Computer Science, 372 (2-3), 242–266, 2007.

[20] G. Păun, Computing with membranes,Journal of Computer and System Sciences,

8 From computing to modelling with membrane systems: a critical view

61(1), 108–143, 2000 (see alsoTurku Center for Computer Science-TUCS Report
No 208, 1998).

[21] G. Păun,Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
[22] M.J. Pérez-Jiménez, F.J. Romero-Campero, P systems, a new computational mod-

elling tool for Systems Biology, Transactions on Computational Systems Biology
VI (C. Priami, G. Plotkin Eds.), LNBI 4220, 176–197, 2006.

[23] D. Pescini, D. Besozzi, G. Mauri, Investigating local evolutions in dynamical prob-
abilistic P systems,Seventh International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC’05), IEEE Computer Press, 440–
447, 2005.

[24] D. Pescini, D. Besozzi, G. Mauri, C. Zandron, Dynamicalprobabilistic P systems.
International Journal of Foundations of Computer Science, 17, 1, 183–204, 2006.

[25] D. Pescini, D. Besozzi, C. Zandron, G. Mauri, Analysis and simulation of dynam-
ics in probabilistic P systems,DNA Computing, 11th International Workshop on
DNA Computing, DNA11(N. Pierce, A. Carbone, eds.), LNCS 3892, 236–247,
2006.

[26] S. Plyasunov, A.P. Arkin, Efficient stochastic sensitivity analysis of discrete event
systems,J. Comput. Phys., 221, 724–738, 2007.

[27] S. Reinker, R.M. Altman, J. Timmer, Parameter estimation in stochastic biochem-
ical reactions,Systems Biology, IEE Proceedings, 153, 4, 168–178, 2006.

[28] M. Rodriguez-Fernandez, P. Mendes, J.R. Banga, A hybrid approach for efficient
and robust parameter estimation in biochemical pathways,BioSystems, 83, 248–
265, 2006.

[29] F.J. Romero-Campero, M.J. Pérez-Jiménez, Modelling gene expression control
using P systems: the Lac operon, a case study,BioSystems, 91, 3, 438–457, 2008.

[30] A. Saltelli, M. Ratto, S. Tarantola, F. Campolongo, sensitivity analysis for chemi-
cal models,Chem. Rev., 105, 2811–2827, 2005.

[31] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana,
S. Tarantola,Global Sensitivity Analysis: The Primer, Wiley-Interscience, 2008.

[32] G. Terrazas, N. Krasnogor, M. Gheorghe, F. Bernardini,S. Diggle, M. Cámara, An
environment aware P-system model of quorum sensing,CiE 2005(S.B. Cooper,
B. Löwe, L. Torenvliet Eds.), LNCS 3526, 479–485, 2005.

[33] J. Tomshine, Y.N. Kaznessis, Optimization of a stochastically simulated gene net-
work model via simulated annealing,Biophysical Journal, 91, 3196–3205, 2006.

[34] T.E. Turner, S. Schnell, K. Burrage, Stochastic approaches for modelling in vivo
reactions,Computational Biology and Chemistry, 28, 165–178, 2004.

Modelling and analysing the dynamic behaviour
of biochemical networks

———————————————
David Gilbert

University of Glasgow, Bioinformatics Research Centre,
A310, Joseph Black Building, Glasgow G12 8QQ, UK
drg@brc.dcs.gla.ac.uk

Modelling intracellular biochemical networks presents particular challenges
connected with the need to reconcile the difficulty of obtaining experimental
data with the requirements of providing information at a level of detail which
will be useful for biochemists. Such models should be able toboth explain and
predict behaviour, and I will illustrate this with researchundertaken in Glasgow
in the area of intracellular signalling pathways. Moreovermodelling is a key
component in the emerging discipline of Synthetic Biology in which the activity
of design as well as analysis is of prime importance. I will discuss a framework
for modelling and analysing biochemical networks which unifies qualitative and
quantitative approaches, and show how it has been applied inthe context of a
Synthetic Biology project. I will also describe a very fast model checker that
has been developed at Glasgow which can be applied to biochemical systems
and discuss how it can be used to drive the design of such systems.

Multilevel modeling of morphogenesis

———————————————
Paulien Hogeweg

Utrecht University, Theoretical Biology and Bioinformatics Group,
Padualaan 8, 3584CH Utrecht, The Netherlands
P.Hogeweg@uu.nl

In order to study the growth and development of cellular systems one needs a
formalism in which on can combine the biophysical properties of cells with the
modulation of these properties by gene regulatory processes. I will argue that
the multisclale CA formalism now known as the Cellular PottsModel (CPM)
provides a simple yet basically sound representation of a biological cell, which
can be interfaced with gene regulatory processes. It represents a cell as highly
deformable object which takes its shape from internal and external forces acting
upon it. I will demonstrate how within this formalism complex large scale mor-
phodynamic processes can result from local regulation of cell, and in particular
membrane, properties. I will explain morphogenetic mechanisms which tend to
evolve in such systems.

1 Introduction

Biological development, in particular morphogenesis, is an pre-eminent example of a
process which bridges mutiple levels of organization.

For modeling these processes we need a multilevel modeling formalism which allows
us to incorporate the following premisses.
• Target morhogenesis ss (not only pattern formation)
• Use cells as basic unit (growth, division, movement, ...)
• Cell is NOT point, bead, homunculus, but deformable highly viscous objects
• Genes act through cells ’with a dynamics of their own”

Moreover, although biological systems are highly complex it should allow is to formu-
late models which are “simple enough but not too simple” cf Einstein).

For these requirements a simple but basically correct representation of a cell is essential.

12 Multilevel modeling of morphogenesis

Fig. 3.1 representation of biological cells in CPM

2 Some material properties of biological cells

Properties of cells as material objects which distinguishes them from often used simpli-
fied representations are:

• Biological cells are highly dissipative systems:
Viscosity dominates inertia

• forces acting on cells can best be described in Aristotelianregime(F −̃ v)
• resistance to shape-changes intrinsic to cell(Yield)
• very fast redistribution of intracellular pressure through

osmotic pressure balancedue to water flow across membrane (exp. shown in Parame-
cium by Iwamoto et al 2005)

• Compressibility under mechanical forceexp shown by e.g. Tricky et al 2006: they
measure a Poisson ratio of .36 in chondrocytes. Volume variations upto 20% have
been observed by Iwamoto et al 2005

• ’Spontaneous’ membrane fluctuations driven by cytoskeleton
when inhibited adhesion driven cell sorting is reduced (Mombach et al 1995)

• Cortical tension, and regulation thereof can modify cell shape (see review Lecuit
and Lenne, 2007)

3 Modeling the generic properties of biological cells

A simple model which incorporates these properties is the socalled “Cellular Potts
model (CPM)” (Glazier & Graner 1993, Graner and Glazier 1992) It is a 2 scale cellular
automata-like model. The model formulation involves two intrinsic scales, the micro
scale on which the dynamics takes place (the CA scale) and thescale of the represented
biological cell(s), whose (dynamic) properties impact on the micro-scale dynamics. This
is realized as follows:

• The cells are mapped to the cellular automaton as a set of contiguous grid cells with
identical state (see fig 1)

Multilevel modeling of morphogenesis 13

Fig. 4.2 size differences may lead to movement “against the flow”, (cfKäfer et al 2006)

• Cells have an actual volume v and target volume V (in number ofpixels), possibly a
membrane-size m and M, a typeτ (and)

• Between cells: free energy bondJij where i and j are the types of the cells
• dynamics:Free energy minimization with volume, membrane conservation:

H =
∑ Jij

2
+
∑

Jim + λ(v − V)2 + α((m−M)2

whereJi,j represent surface energy between cells (andJi, m that between a cell and
the medium).

• Copy state of neighboring cell with probability:

Pi−>j = 1 iff ∆H < −Y

Pi−>j = e−(∆H+Y)/T iff ∆H ≥ −Y

where Y represents the energy expenditure of deformation (Yeild).

This energy based model automatically integrates multiplelocal forces on the cell. By
measuring the deformation of cells these forces can be analyzed.

4 From cells to tissue level dynamics

Such a representation of a cell can generate a rich variety oftissue level dynamical
properties which include:

• cell sorting by differential adhesion
• Individual cells ’wiggle’ through cell mass
• Individual cells can ’move against the flow’

e.g. by being smaller/larger; being in the minority or adhesion Käfer, Hogeweg &
Marée 2006

14 Multilevel modeling of morphogenesis

5 Interfacing generic and informatic properties of cells

Important as the generic properties of biological cells are, they do not fully describe
a biological cell. Cells are pre-ementenly information rich dynamical entities, which
change there properties continuously, based on intra cellular and extra cellular signals.
Thus to fully describe a cell, one needs to interface the mechanical properties with the
intra cellular gene regulation dynamics.

Such an interface is easily achieved in the CPM formalism, because, although the basic
dynamics is on the subcellular level, the cell exist as an entity in the model definition.
The state of the dynamics of the intracellular dynamics can be mapped to the properties
of the cell, e.g. its target volume (V), its cell surface properties (affectingJi,js) etc. By
affecting the target volume (V) rather than the actual volume (v) the cell based dynamics
co-determines if and how this state change will indeed change the cell volume. Likewise
by changing surface receptors, the effect thereof will depend on the expressed receptors
of neighboring cells.

Below is a list of potential ways in which the generic properties of the cells as defined
above can be modified my informatic processes within the cell, together with some
references to studies which have used this type of interfacing,

• Cell differentiation
e.g. governed by gene regulation networks Hogeweg 2000a,b
leading to (Jij− > J ′

ij)
. production of morphogens
. changes in Y,V,M

• Induced growth (V++)
• cell division σi− > σi + σj

• Squeeze induced Apoptosis Chen et al 1997(λ small)
• Stretch induced growth Chen et al 1997(if v > V + τ : V + +)
• intra and inter cellular reaction/diffusion systems . Savill and Hogeweg 1997

. Marée & Hogeweg 2001
• Chemotaxis (∆H = ∆H + grad)
• Polarity: Persistent, adjustable directional motion Beltman et al 2007
• explicit intracellular cytoskelon dynamics Marée et al 2006
• particle based modeling of intracellular reaction dynamics Hogeweg & Takeuchi

2003

In this way a great variety of developmental processes unfolding at many space and
timescales can be studied by relatively simple models. For example the entire life cycle
the slime moldDictyostelium discoideum, which includes a single cell stage, a crawling
multicellular slug which orients itself toward light and temperature, and finally settles
down and metamorphoses to a fruiting body has been modeled inthis way (Savill and

Multilevel modeling of morphogenesis 15

Hogeweg 1997, Marée and Hogeweg 1999, 2001). Another interesting example is the
elucidation of the mechanism of the growth of plant roots, inparticularArabidopsis.
It was shown (Grieneisen et al 2007) that the localization ofsurface receptors (PIN’s)
which pump auxin out of the cell, explains the formation of anauxin maximum near
the tip of the root in a matter of seconds. Through this maximum and the resulting
auxin gradients the cell division and elongation is regulated leading to the characteristic
root growth and morphological changes over a time period of weeks. The shape of the
cells turns out to be very essential for understanding the concentrations of auxin, and
therewith the regulation of growth in the various regions ofthe root (Grieneisen et al
in prep). Notwithstanding the relative simplicity of the model, the predictions derived
from the in silico root have been successfully tested in the real plant

6 From cells to (evolved) mechanisms of morphogenesis

Not only do we want to understand the developmental mechanisms of particular extant
organisms, but we also want to gain insight in generic mechanisms of morphogenesis
as a result of the interface between mechanical properties of cells and the gene reg-
ulation. To this end yet an other timescale can be added to themodel, i.e. the evolu-
tionary timescale. Hogeweg (2000a,b) studied the morphogenetic mechanisms which
emerged in a population of “critters” which developed from asingle zygote to a multi-
color clump of cells. The cells contained an initially random gene regulation network,
which changed its structure over time by mutations, The selection criterion used was
cell differentiation. By using this criterion, rather than morphogenesis itselfas for the
selection, “generic” morphogenetic mechanisms could be uncovered, i.e. those which
emerged as side effect of cell differentiation.

Examples of the development of so evolved “critteres” are shown in fig 3. Thus, al-
though the basic CPM formalism is an energy minimization formalism, which therefore
tends to lead to “blobs” of cells, the interface with the dynamics of cell differentiation
can lead to interesting morphologies. This is because the cell different ion process keeps
the system out of equilibrium. The, by this model, uncoveredmechanisms of morpho-
genesis resemble those described in multicolor organisms,both plants and animals. One
interesting mechanism is “convergent extension” in which the polarization and elonga-
tion of cells in one direction, leads to tissue growth in the direction perpendicular to it
(see fig 4).

7 Conclusions

Previous models of morphogenesis have often confined themselves to pattern formation
(e.g. Turing patters) (e.g. Meinhardt anf Gierer 2000), or to purely informatic models of
cells whose interactions are solely based on ancestry rather than on a dynamic neigh-
bourhood of other cells (e.g. L systems) (Lindenmayer 1968,Hogeweg & Hesper 1974,

16 Multilevel modeling of morphogenesis

Fig. 6.3 evolution for cell differentiation leads to morphogenesis(Hogeweg 2000a,b)

Fig. 6.4 convergent extension in bipolar cells (cf Zajac et al 2003, Hogeweg unpublished)

P. Prusinkiewicz and A. Lindenmayer 1990) The modeling formalism described here
goes an important step beyond those approaches by combininggeneric (mechanical)
properties of cells with informatic properties. This allows us to study morphogenesis in
the strict sense: the generation of macroscopic shapes fromsubcellular processes. In the
words of Segel(2001), referring to theDictyosteliummodel, it allows us “to compute
an organism”.

We find in the variety of models studied that mesoscopic description of cell is essential,
and that morphogenesis is a sustained out of equilibrium process through the interaction
of processes at multiple space and time scales.

8 References

Beltman JB, Mare AF, Lynch JN, Miller MJ, de Boer RJ. Lymph node topology dictates
T cell migration behavior. J Exp Med. 2007 Apr 16;204(4):771-80.

C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides and D.E. Ingber , Geometric control
of cell life and death. Science 276 (1997), pp. 1425 1428.

Multilevel modeling of morphogenesis 17

Graner F, Glazier JA. Simulation of biological cell sortingusing a two-dimensional
extended Potts model. Phys Rev Lett. 1992 Sep 28;69(13):2013-2016

J.A. Glazier and F. Graner , Simulation of the differential driven rearrangement of bio-
logical cells. Phys. Rev. E 47 (1993), pp. 2128 21254.

Grieneisen VA, Xu J, Mare AF, Hogeweg P, Scheres B. Auxin transport is sufficient to
generate a maximum and gradient guiding root growth. Nature. 2007 Oct 25;449(7165):
1008-13.

. Hogeweg and B. Hesper , A model study on morphological description. Pattern Recogn.
6 (1974)

Hogeweg P. Evolving mechanisms of morphogenesis: on the interplay between differ-
ential adhesion and cell differentiation. J Theor Biol. 2000 Apr 21;203(4):317-33.

Hogeweg P. Shapes in the shadow: evolutionary dynamics of morphogenesis. Artif Life.
2000 Winter;6(1):85-101.

Hogeweg P. Computing an organism: on the interface between informatic and dynamic
processes. Biosystems. 2002 Jan;64(1-3):97-109.

Hogeweg P, Takeuchi N. Multilevel selection in models of prebiotic evolution: compart-
ments and spatial self-organization. Orig Life Evol Biosph. 2003 Oct;33(4-5):375-403.

A. F. M. Maree, A. Jilkine, A. Dawes, V. A. Grieneisen, and L. Edelstein-Keshet. Po-
larization and movement of keratocytes: a multiscale modelling approach. Bull. Math.
Biol., 68(5):1169 1211, July 2006

Käfer J, Hogeweg P, Marée AF. Moving forward moving backward: directional sorting
of chemotactic cells due to size and adhesion differences. PLoS Comput Biol. 2006 Jun
9;2(6):e56. Epub 2006 Jun 9.

Lecuit T, Lenne PF. Cell surface mechanics and the control ofcell shape, tissue patterns
and morphogenesis. Nat Rev Mol Cell Biol. 2007 Aug;8(8):633-44. Review.

Lindenmayer A , Mathematical models for cellular interactions in development. I. Fila-
ments with one-sided inputs. J. Theor. Biol. 18 3 (1968a), pp. 280 299.

Mar e AF, Panfilov AV, Hogeweg P. Migration and thermotaxis ofdictyostelium dis-
coideum slugs, a model study J Theor Biol. 1999 Aug 7;199(3):297-309.

Mare AF, Hogeweg P. How amoeboids self-organize into a fruiting body: multicellu-
lar coordination in Dictyostelium discoideum. Proc Natl Acad Sci U S A. 2001 Mar
27;98(7):3879-83.

18 Multilevel modeling of morphogenesis

A. F. M. Maree, A. Jilkine, A. Dawes, V. A. Grieneisen, and L. Edelstein-Keshet. Po-
larization and movement of keratocytes: a multiscale modelling approach. Bull. Math.
Biol., 68(5):1169 1211, July 2006

Meinhardt and Gierer, 2000H. Meinhardt and A. Gierer , Pattern formation by local
self-activation and lateral inhibition. Bioessays 22 8 (2000), pp. 753 760

Mombach JC, Glazier JA, Raphael RC, Zajac M. Quantitative comparison between dif-
ferential adhesion models and cell sorting in the presence and absence of fluctuations.
Phys Rev Lett. 1995 Sep 11;75(11):2244-2247.

P. Prusinkiewicz and A. Lindenmayer The Algorithmic Beautyof Plants, Springer, New
York (1990).

Savill, N.J. and P. Hogeweg Modelling morphogenesis: from single cells to crawling
slugs. J. theor. Biol. 1997 184, 229-235.

Segel L, Computing an organism. Proc. Natl. Acad. Sci. USA 987 (2001), pp. 3639 3640.

Zajac M, Jones GL, Glazier JA. Simulating convergent extension by way of anisotropic
differential adhesion. J Theor Biol. 2003 May 21;222(2):247-59

Multi-Scale Modeling and Simulation of
Cellular Membrane Transport and Reaction Systems

———————————————
Markus Kirkilionis

University of Warwick, Mathematics Department,
Coventry CV4 7AL, UK
mak@maths.warwick.ac.uk

Based on the development of new experimental techniques, mainly imaging
techniques like FRAP and FRET, cellular transport and reaction processes can
be better understood than ever before. Cell biology in general offers a whole
range of such important applications (in the end all life depends on this com-
plex machinery) which are challenging for mathematical modeling and the per-
formance of existing numerical algorithms. Inside the cellmembrane systems
like the ones involved in the secretory pathway are especially important and can
be used to understand the state-of-the-art of modeling and simulation in a wider
area to much advantage.
One specific property of cellular structures are their complicated geometry, here
just called ’Complex Domains’. The complexity of these cellular domains can
now be measured much more accurately with the help of modern imaging and
image analysis techniques. It is tempting to combine methods from image anal-
ysis and numerical simulations in order to get a better understanding how dif-
ferent molecules, small to large (ions to protein complexes) distribute and react
inside the cell. Moreover such geometries are typically ’complex’ on every rel-
evant scale. This makes their representation in a simulation typically difficult,
and one must use adequate approximations. This need for averaging nicely ex-
plains why (in this case spatial) scales are important (and why all modeling is
relative to a chosen scale), and therefore scale is perhaps the most important
notion in this area, even before considering the appropriate choice of either a
discrete or continuous state space to represent the different components of the
system.
The same is true for the second part of the problem, the action(mostly bind-
ing) of macro-molecules with each other or other binding partners. This process
creates events at which the system state changes, and that again needs to be
represented relative to a chosen temporal scale in the model(and finally the
simulation). We discuss this with the help of birth-death processes and the dy-
namics of Markov chains, and describe the dynamics of ion channels in a typical
membrane with the help of multi-scale analysis.

A Multiscale Modelling Framework Based On
P Systems

———————————————
Francisco J. Romero-Campero

University of Nottingham, School of Computer Sciences and IT,
Jubilee Campus, Nottingham, NG8 1BB, UK
fxc@cs.nott.ac.uk

Cellular systems present a highly complex organisation at different scales in-
cluding the molecular, cellular and colony levels. The complexity at each one
of these levels is tighly interrelated to each other. Integrative systems biology
aims to obtain a deeper understanding of cellular systems byfocusing on the
systemic integration of the different levels of organisation in cellular systems.
The different approaches in celluar modelling within systems biology have been
classified into mathematical and computational frameworks. Specifically, the
methodology to develop computational models has been recently called exe-
cutable biology since it produces executable algorithms whose computations
resemble the evolution of cellular systems.
In this work we present P systems as a multiscale modelling framework within
executable biology. P system models explicitly specify themolecular, cellular
and colony levels in cellular systems in a relevant and understandable man-
ner. Molecular species and their structure are representedby objects or strings,
compartmentalisation is described using membrane structures and finally cellu-
lar colonies and tissues are modelled as a collection of interacting individual P
systems. The interactions between the components of cellular systems are de-
scribed using rewriting rules. These rules can in turn be grouped together into
modules to characterise specific cellular processes.
One of our current research lines focuses on the design of cell systems biol-
ogy models exhibiting a prefixed behaviour by assembling automatically these
cellular modules. Our approach is equally applicable to systems as well as syn-
thetic biology.

Interactive processes in systems based on
facilitation and inhibition

———————————————
Grzegorz Rozenberg

Universiteit Leiden, LIACS,
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
rozenber@liacs.nl

From a behavioural point of view many systems encountered innature are based
on interactions between a number (usually a huge number) of basic processes.
Often such interactions are based on two main mechanisms: facilitation and
inhibition. For example, this point of view is well suited for considering sys-
tems of biochemical reactions, where individual reactionsinfluence each other
through facilitation/acceleration and inhibition/retardation.
In our talk we discuss reaction systems which constitute a formal framework
for specifying, modeling, and analyzing the kind of systemsoutlined above.
In particular we will discuss the basic axioms (assumptions) that hold for a
great number of biochemical reactions, and therefore underlie the formal setup
for reaction systems. We point out that these axioms are quite different (often
orthogonal) to the underlying axioms of traditional/typical models considered
in theoretical computer science.
We will present a number of formal properties of reaction systems as well as
a number of research topics/areas, such as modularity and introducing time in
reaction systems. The talk is self-contained; in particular we do not require any
specific knowledge of basic properties of biochemical reactions.

On the Qualitative Analysis of Conformon P-Systems

———————————————
Parosh Aziz Abdulla1, Giorgio Delzanno2, Laurent Van Begin3

1Uppsala University, Department of Information Technology,
Lägerhyddsvägen 2, 752 37 Uppsala, Sweden
parosh@it.uu.se

2Università di Genova, Dipartimento di Informatica e Scienze dell’Informazione,
via Dodecaneso 35, 16146 Genova, Italy
giorgio@disi.unige.it

3Université Libre de Bruxelles, Département d’Informatique,
Boulevard du Triomphe, 1050 Bruxelles, Belgium
lvbegin@ulb.ac.be

We study computational properties of conformon P-systems,an extension of
P-systems in which symbol objects are labelled by their current amount of en-
ergy. We focus here our attention to decision problems like reachability and
coverability of a configuration and give positive and negative results for the full
model and for some of its fragments. Furthermore, we investigate the relation
between conformon P-systems and other concurrency models like nested Petri
netsandconstrained multiset rewriting systems.

1 Introduction

P-systems [10] are a basic model of the living cell defined by aset of hierarchically
organized membranes and by rules that dynamically distribute elementary objects in
the component membranes. Conformon P-Systems [5] are an extension of P-systems in
which symbol objects (conformons) are labelled with their current amount of energy. In
a conformon P-system membranes are organized into a directed graph. Furthermore, a
symbol object is a pair name-value, where name ranges over a given alphabet, and value
is a natural number. The value associated to a conformon denotes its current amount of
energy. Conformon P-systems provide rules for the exchangeof energy from a con-
formon to another and for passing through membranes. Passage rules are conditioned
by predicates defined over the values of conformons. In [6] Frisco and Corne applied
conformon P-systems to model the dynamics of HIV infection.Concerning the expres-
sive power of conformon P-systems, in [5] Frisco has shown that the model is Turing
equivalent even without the use of priority or maximal parallelism.

26 On the Qualitative Analysis of Conformon P-Systems

In this paper we investigate restricted fragments of conformon P-systems for which de-
cision problems related to verification of qualitative properties are decidable. We focus
our attention to verification of safety properties and decision problems like coverability
of a configuration [1]. The fragment we consider put some restrictions on the form of
predicates used as conditions of passage rules. Namely, we only admit passage rules

with lower bound constraints on the amount of energy as conditions (i.e.p(x)
def
= x ≥ c

for c ∈ N). The resulting fragment, we will refer to asrestricted conformon P-systems,
is still interesting as a model of natural processes. Indeed, we can use it to specify sys-
tems in which conformons pass through a membrane when a givenamount of energy is
reached.

For restricted conformon P-systems, we apply the methodology of [1] to define an algo-
rithm to decide the coverability problem. This algorithm performs a backward reacha-
bility analysis through the state space of a system. Since inour model the set of config-
urations is infinite, the analysis is made symbolic in order to finitely represent infinite
sets of configurations. For this purpose, we use the theory ofwell-quasi orderingsand
its application to verification of concurrent systems [1].

In the paper we also investigate the relation between (restricted) conformon P-systems
and other models used in concurrency like Petri nets [11], nested Petri nets [8], and con-
strained multiset rewriting systems (CMRS) [2]. Specifically, we show that conformon
P-systems are a special class of nested Petri nets, and restricted P-systems are a special
class of CMRS. This comparison gives us indirect proofs for decidability of coverability
in restricted conformon P-systems that follows from the results obtained for nested nets
and CMRS in [9,2].

To our knowledge, this is the first work devoted to the analysis of problems like cover-
ability for conformon P-systems, and to the comparison of the same models with other
concurrency models like nested Petri nets and CMRS.

Plan of the paper In Section 2 we introduce the conformon P-systems model. In
Section 3 we study decision problems like reachability and coverability. In Section 4
we compare conformon P-systems with nested Petri nets and CMRS. Finally, in Section
5 we discuss related work and address some conclusions.

2 Conformon P-systems

Let V be a finite alphabet andN the set of natural numbers. Aconformonis an element
of V ×N0 whereN0 = N∪{0}, denoted by[X, x]. We will refer toX as thenameof the
conformon[X, x] and tox as itsvalue. In the rest of the paper we work with multisets of
conformons. We use{{a1, . . . , an}} to indicate a multiset with elementsa1, . . . , an, and
symbols⊕ and⊖ to indicate resp. multiset union and difference. We useCV to denote
the set of conformons defined over alphabetV .

On the Qualitative Analysis of Conformon P-Systems 27

Conformons are situated inside a finite set of membranes or regions. LetN be the
set of membrane names. Aconfigurationµ is a tuple (indexed onN) of multisets of
conformons. For simplicity we often assume that membranes are numbered from1 to n
and that configurations are tupled(ξ1, . . . , ξn) whereξi is a multiset of conformons in
CV .

The dynamic behavior of conformons is described via a set of rules of the following
form:

• A creationrule has the forme⇀mA, whereA ∈ V , e ∈ N0, andm ∈ N and defines
the creation of a conformon[A, e] inside membranem. A creation rule for confor-
mon [A, e] in membranem corresponds to a conformon[A, e] with cardinalityω
in [5]. The use of creation rules allows us to obtain a better comparison with other
Petri net models as discussed later in the paper.

• An internal rule has the formA e→mB, whereA, B ∈ V , e ∈ N, m ∈ N and defines
the passage of a quantitye of energy from a conformon of typeA to one of typeB
inside membranem.

• A passagerule has the formm
p→֒n wherem, n ∈ N andp(x) is a monadic pred-

icate of one of the following formsx = a, x ≥ a, x ≤ b for a ∈ N0 andb ∈ N.
With this rule, a conformon[X, x] insidem can move to membranen if p(x) is
satisfied by the current value ofX .

As in tissue P-systems, the underlying structure of membranes is here a finite graph
whose nodes are the membranes inN and edges are defined by passage rules. We are
ready now for a formal definition of conformon P-systems.

Definition 1. (Conformon P-system)A basic conformon P-system of degreem ≥ 1
with unbounded values(cP-system for short) is a tupleΠ = (V, N, R, µ0), V is a finite
set of conformon names,N is a finite set of membranes names (we assume that each
membrane has a distinct name),R is a set of rules,µ0 is an initial configuration.

Given a configurationµ, we say that an internal ruler = A e→mB is enabled atµ if there
exist a conformon[A, x] ∈ µ(m) and a conformon[B, y] ∈ µ(m) such thatx ≥ e;
we say in this case thatr operates on conformons[A, x] and[B, y] in µ. A passage rule

r = m
p→֒n is enabled atµ if there exists a conformon[A, x] ∈ µ(m) such thatp(x) is

satisfied; we say here thatr operates on conformon[A, x] in µ. Notice that creation rules
are always enabled. The evolution of a conformon P-systemΠ is defined via a transition
relation⇒ defined on configurations as follows. A configurationµ may evolve toµ′,
writtenµ⇒ µ′, if one of the following conditions is satisfied:

• There exists a ruler = A e→mB in R which is enabled inµ and operates on confor-
mons[A, x] and[B, y], and the following conditions are satisfied:
∗ µ′(m) = (µ(m)⊖ {{[A, x], [B, y]}})⊕ {{[A, x− e], [B, y + e]}};

28 On the Qualitative Analysis of Conformon P-Systems

∗ µ′(n) = µ(n) for anyn 6= m.

• There exists a ruler = m
p→֒n in R which is enabled inµ and operates on confor-

mon[A, x] (i.e.p(x) is true) and the following conditions are satisfied:
∗ µ′(m) = µ(m)⊖ {{[A, x]}};
∗ µ′(n) = µ(n)⊕ {{[A, x]}};
∗ µ′(p) = µ(p) for anyp 6= m, n.

• There exists a ruler = e⇀mA in R and the following conditions are satisfied:

∗ µ′(m) = µ(m)⊕ {{[A, e]}};
∗ µ′(p) = µ(p) for anyp 6= m.

In the rest of the paper we use⇒∗ to indicate the reflexive and transitive closure of the
transition relation⇒. Furthermore, we say thatµ evolves intoµ′ if µ⇒∗ µ′, i.e., there
exists a finite sequence of configurationsµ1, . . . , µr such thatµ = µ1 ⇒ . . . ⇒ µr =
µ′. Furthermore, given a set of configurationsS, the set of successor configurations is
defined as

Post(S)
def
= {µ′ | µ⇒ µ′, µ ∈ S}

and the set of predecessor configurations is defined as

Pre(S)
def
= {µ′ | µ′ ⇒ µ, µ ∈ S}

Notice that the transition relation⇒ defines an interleaving semantics for acP-system
Π, i.e., only a single rule among those enabled can be fired at each evolution step ofΠ.
This semantics is slightly different from the original semantics in [5] where an arbitrary
subset of all enable rules can be fired at each evolution step.It is important to remark
however that the two semantics are equivalent with respect to the kind of qualitative
properties (reachability problems) we consider in this paper.

As an example, consider thecP-system with two membranesm1 andm2 andN =

{A, B, C}, and with the rules1⇀m1
A, A 1→m1

B, andm1

p→֒m2 wherep(x) is defined by
the equalityx = 3. In this model the configurationc = ({{[B, 0]}}, ∅) may evolve as
follows:

c⇒ ({{[A, 1], [B, 0]}}, ∅)⇒ ({{[A, 1], [A, 1], [B, 0]}}, ∅)⇒
({{[A, 1], [A, 1], [A, 1], [B, 0]}}, ∅)⇒ ({{[A, 1], [A, 1], [A, 0], [B, 1]}}, ∅)⇒
({{[A, 1], [A, 0], [A, 0], [B, 2]}}, ∅)⇒ ({{[A, 0], [A, 0], [A, 0], [B, 3]}}, ∅)⇒
({{[A, 0], [A, 0], [A, 0]}}, {{[B, 3]}})

Finally, notice that both our semantics and Frisco’s semantics in [5] do not require all
enabled rules to be fired simultaneously as in the semantics of P-systems (maximal
parallelism). In general, maximal parallelism and interleaving semantics may lead to
models with different computational power.

On the Qualitative Analysis of Conformon P-Systems 29

3 Qualitative analysis of cP-systems

In [5] Frisco introduced the class ofcP-systems withbounded valuesin which the only

type of admitted creation rules have the form0⇀mA, i.e., the only type of conformons
for which there is no upper bound on the number of occurrencesin reachable config-
urations (finite but unbounded multiplicity) are of the form[A, 0]. In cP-system with
bounded valuesthe total amount of energy in the system is always constant. Thus, with
this restriction, the only dimension of infiniteness of the state-space is the number of oc-
currences of conformons. This kind of restricted systems, saycP-systems with bounded
values, can be represented as Petri nets. Thus, several interesting qualitative properties
like reachability and coverability of a configuration can bedecided for this fragment of
cP-systems.

In the full model the set of configurations reachable from an initial one may be infinite
in two dimensions, i.e., in the number of conformons occurring in the membrane system
and in the amount of total energy exchanged in the system. In [5] Frisco has proved that
full cP-systems are a Turing equivalent model. Despite of the power of the model, we
prove next that a basic qualitative property calledreachabilitycan be decided for full
cP-systems. Let us first define the reachability problem.

Definition 2. (Reachability problem)
The reachability problem is defined as follows: Given acP-systemΠ = (V, N, R, µ0)
and a configurationµ1, doesµ0 ⇒∗ µ1 hold?

The following results then hold.

Theorem 1. (Decidability of reachability for full cP-systems)
The reachability problem (w.r.t. relation⇒) is decidable for anycP-system.

Proof The proof is based on a reduction of reachability of configuration µ1 in a cP-
systemΠ to reachability in a finite-state system extracted fromΠ andµ1. The reduc-
tion is based on the following key observation. For two configurationsµ0 andµ1 the
setQ of distinct configurations that may occur in all possible evolutions fromµ0 to
µ1 is finite. This property is a consequence of the fact that internal and passage rules
maintain constant the total number of conformons and the total amount of energy of a
system (sum of the values of all conformons) whereas creation rules may only increase
both parameters. Thus, the total amount of conformons and ofenergy in configuration
µ1 gives us an upper boundUC on the possible number of conformons and an upper
boundUV on their corresponding values in any evolution fromµ0 to µ1. Based on
this observation, it is simple to define a finite-state automaton S with states inQ and
transition relationδ defined by instantiating the rules inR over the elements inQ. As
an example, ifV = {A, B}, N = {m, n}, UC = 10 andUV = 4 andR contains

30 On the Qualitative Analysis of Conformon P-Systems

the ruler = A 2→mB. Then, we have to consider a finite state automaton in which the
states are all possible configurations containing at most10 elements taken from the
alphabetΣ = {[X, n] | X ∈ V, 0 ≤ n ≤ 4}. The ruler generates a transition re-
lation δ that put in relations two statesµ andµ′ iff µ(m) contains a pair of elements
[A, a], [B, b] ∈ Σ such thata and a + 2 satisfy the condition2 ≤ a, a + 2 ≤ 4,
µ′(m) = (µ(m) ⊖ {{[A, a], [B, b]}}) ⊕ {{[A, a − 2], [B, b + 2]}} andµ′(m′) = µ(m′)
for all the membranesm′ 6= m. The finite automatonS satisfies the property thatµ1 is
reachable fromµ0 in thecP-systemΠ if and only if the pair(µ0, µ1) is in the transitive
closure ofδ. The thesis then follows from the decidability of configuration reachability
in a finite-automaton. 2

In order to study verification of safety properties, we need to introduce an ordering
between configurations similar to the coverability ordering used for models like Petri
nets. We use here an ordering⊑ between configurationsµ andµ′ such that for each
membranem, each conformon inµ(m) is mapped to a distinguished conformon in
µ′(m) that has the same name and greater or equal value. This ordering allows us to
reason about the presence of a conformon with a given name andat least a given amount
of energy inside a configuration.

Example 1 Consider the configurations

µ1 = ({{[A, 2], [A, 4], [B, 3]}}, {{[A, 5]}})
µ2 = ({{[A, 4], [A, 5], [B, 6], [C, 8]}}, {{[A, 7], [B, 5]}})

Thenµ1 ⊑ µ2, since[A, 2], [A, 4] and[B, 3] in membrane1 of µ can be associated resp.
to the conformons[A, 4], [A, 5] and[B, 6] in membrane1 of µ2; furthermore,[A, 5] in
membrane2 of µ can be associated to conformon[A, 7] in membrane2 of µ2. Consider
now the configurations

µ3 = ({{[A, 4], [A, 5], [B, 1]}}, {{[A, 7], [B, 5]}})
µ4 = ({{[A, 5], [B, 6]}}, {{[A, 7], [B, 5]}})

Then,µ1 6⊑ µ4 since there is no conformon in membrane1 in µ3 with nameB and value
greater or equal than3. Furthermore,µ1 6⊑ µ4 since we cannot associate two different
conformons, namely[A, 2] and [A, 4] in µ1, to the same conformon, namely[A, 5],
in µ4. Finally, notice that the configurationµ = ({{[A, 0]}}, ∅) is such thatµ ⊑ µi for
i : 1, . . . , 4. The configurationµ can be used to characterize the presence of a conformon
with nameA in membrane1 no matter of how energy it has.

The ordering⊑ is formally defined as follows.

Definition 3. (Ordering ⊑) Given two configurationsµ and µ′, µ ⊑ µ′ iff for each
m ∈ N there exists aninjective mappinghm from µ(m) to µ′(m) that satisfies the
following condition: for each[A, x] ∈ µ(m), if hm([A, x]) = [B, y], thenA = B and

On the Qualitative Analysis of Conformon P-Systems 31

x ≤ y ([A, x] is associated to a conformon with the same name and larger amount of
energy).

A set S of configurations is saidupward closedw.r.t. ⊑ if the following condition is
satisfied: for anyµ ∈ S, if µ ⊑ µ′ thenµ′ ∈ S. In other words if a configurationµ
belongs to an upward closed setS then all the configurations greater thanµ w.r.t. ⊑
belong toS either.

Consider now the following decision problem.

Definition 4. (Coverability problem) The coverability problem is defined as follows:
Given acP-systemΠ = (V, N, R, µ0) and a configurationµ1, is there a configuration
µ2 such thatµ0 ⇒∗ µ2 andµ1 ⊑ µ2?

Coverability can be viewed as a weak form ofconfiguration reachabilityin which we
check whether configurations with certain constraints can be reachable from the initial
configuration. In concurrency theory, the coverability problem is strictly related to the
verification of safety properties. This link can naturally be transferred toqualitative
propertiesof natural systems. As an example, checking if a configuration in which two
conformons with nameA can occur in membranem during the evolution of a system
amounts to checking the coverability problem for the targetconfigurationµ2 defined as
µ2(m) = {{[A, 0], [A, 0]}} andµ2(m

′) = ∅ for m′ 6= m. The following negative result
then holds.

Proposition 1 The coverability problem is undecidable for fullcP-systems.

Proof The encoding of a counter machineM in cP-systems can be adapted to our for-
mulation with creation rules in a direct way: conformons with ω-cardinality are speci-
fied here by creation rules. In the encoding in [5] an execution of the counter machine
M leading to locationℓ is simulated by the evolution of acP-systemΠM that reaches
a configuration containing a conformon[ℓ, 9] in a particular membrane, saym. No-
tice also that the membranem cannot contain, by construction, a conformon[ℓ, v] with
v > 9. Thus, coverability of the configuration with[ℓ, 9] insidem in ΠM corresponds
to reachability of locationℓ in M . Since location reachability is undecidable for counter
machines, coverability is undecidable forcP-systems. 2

3.1 A syntactic fragments ofcP-systems In this section we show that checking
safety properties can be decided for a fragment ofcP-systems with a restricted form of
passage rules in which conditions are only defined by lower bound constraints.

32 On the Qualitative Analysis of Conformon P-Systems

Definition 5. (RestrictedcP-systems)We call restrictedthe fragment ofcP-systems
in which we forbid the use of predicates of the formx = c andx ≤ c as conditions of
passage rules.

Our main result is that, despite of the two dimension of infiniteness, the coverability
problem is decidable for restrictedcP-systems with an arbitrary number of conformons.
To prove the result we adopt the methodology proposed in [1],i.e., we first show that
restrictedcP-systems are monotonic w.r.t.⊑. We then show that⊑ is a well-quasi or-
dering. This implies that any upward closed set is represented via a finite set of minimal
(w.r.t.⊑) configurations. Thus, minimal elements can be used to finitely represent in-
finite (upward closed) sets of configurations. Finally, we prove that, given an upward
closed setS of configurations, it is possible to compute a finite representation of the
set of predecessor configurations ofS. Monotonicity ensures us that such a set is still
upward closed. We compute it by operating on the minimal elements ofS only.

Lemma 1. (Monotonicity) RestrictedcP-systems are monotonic w.r.t.⊑, i.e., ifµ1 ⇒
µ2 andµ1 ⊑ µ′

1, then there existsµ′
2 such thatµ′

1 ⇒ µ′
2 andµ2 ⊑ µ′

2.

Proof Let µ1 be a configuration evolving intoµ2, and letµ1 ≤ µ′
1. The proof is by

case analysis on the type of rules applied in the execution step. Notice that the case of
creation rule is trivial. Hence, we concentrate on the two remaining cases.
Internal rule.Let us consider a single application of an internal ruleA e→mB operating
on conformons[A, x] and[B, y] in membranem. Since the rule is enabled we have that
x ≥ e. Furthermore, the application of the rule modifies the valueof the two conformons
as follows:[A, x− e] and[B, y + e].
Sinceµ1 ⊑ µ′

1 and by definition of⊑, we have that there exist conformons[A, x′] and
[B, y′] in membranem of µ′

1 such thatx ≤ x′ andy ≤ y′. Thus, the same rule can
be applied to[A, x′] and[B, y′] leading to a configurationµ′

2 in which the two selected
conformons are updated as follows:[A, x′ − e] and[B, y′ + e]. Finally, we notice that,
sincex′ ≥ x ≥ e, we have thatx− e ≤ x′ − e andy + e ≤ y′ + e. Thus,µ2 ⊑ µ′

2.

Passage rule.Let us consider a single application of a passage rulem
p→֒n with p(y)

def
=

y ≥ e and operating on the conformons[A, x] in membranem. Since the rule is enabled
we have thatx ≥ e. Furthermore, the application of the rule moves the conformon to
membranen in µ2.
Sinceµ1 ⊑ µ′

1 and by definition of⊑, we have that there exist conformons[A, x′] in
membranem of µ′

1 such thatx ≤ x′. Thus, the same passage rule is enabled inµ′
1 and

can be applied to move[A, x′] in membranen in µ′
2.

Thus, we have thatµ2 ⊑ µ′
2. 2

From the monotonicity property, we obtain the following corollary.

On the Qualitative Analysis of Conformon P-Systems 33

Corollary 1 For any restrictedcP-systems and any upward closed set (w.r.t.⊑) S of

configurations, the set of predecessor configurations ofS, namelyPre(S)
def
= {µ | µ⇒

µ′, µ′ ∈ S}, is upward closed.

It is important to notice that the last two properties do not hold for full cP-systems.
As an example, a passage rule from membrane1 to 2 with predicatex = 0 is not
monotonic w.r.t. to the configurationsµ1 = ({{[A, 0]}}, ∅) and µ′

1 = ({{[A, 1]}}, ∅).
Indeed,µ1 ⊑ µ′

1 andµ1 ⇒ µ2 = (∅, {{[A, 0]}}) butµ′
1 has no successors. Furthermore,

the set of predecessors of the upward closed set with minimalelementµ3 is the singleton
containingµ1 (clearly not an upward closed set).

Let us now go back to the properties of the ordering⊑. We first have the following
property.

Lemma 2 Given acP-systemΠ and two configurationsµ andµ′, checking ifµ ⊑ µ′

holds (i.e. ifµ is more general thanµ′) is a decidable problem.

Indeed, to decide it we have to select an appropriate injective mapping from a a finite
set of mappings fromµ to µ′ and, then, to compute a finite set of multiset inclusions.

Let us now recall the notion ofwell-quasi ordering(see e.g. [7]).

Definition 6. (⊑ is a wqo) A quasi ordering� on a setS is a well-quasi ordering
(wqo) if and only if for any infinite sequencea1, a2, . . . of elements inS (i.e.ai ∈ S for
anyi ≥ 1) there exist indexesi < j such thatai � aj .

The following important property then holds.

Lemma 3. (⊑ is a wqo) Given acP-systemΠ = (V, N, R, µ0), the ordering⊑ defined
on the set of all configuration ofΠ is a wqo.

Proof AssumeN = {1, . . . , m} as the set of membrane names. Let us first notice that
a configurationµ can be viewed as a multiset of multisets of objects over the alphabet
V 1 ∪ . . . ∪ V m, whereV i = {vi | v ∈ V }. Indeed,µ can be reformulated as the
multiset unionρ1⊕ . . .⊕ ρm where for each[A, x] ∈ µ(m), ρi contains a multiset with
x occurrences ofAm. E.g.,µ1 = ({{[A, 2], [B, 3]}}, {{[A, 5]}}) can be reformulated as
the multiset of multisets{{{{A1, A1}}, {{B1, B1, B1}}, {{A2, A2, A2, A2, A2}}}}.

When considering the aforementioned reformulation of configurations, the ordering⊑
corresponds to the composition of multiset embedding (the existence of injective map-
ping h1, . . . , hm) and multiset inclusion (the constraint on values). Since multiset in-

34 On the Qualitative Analysis of Conformon P-Systems

clusion is a well-quasi ordering, we can apply Higman’s Lemma [7] to conclude that⊑
is a well-quasi ordering. 2

As a consequence of the latter property, we have that every upward closed setS of
configurations is generated by a finite set of minimal elements, i.e., for any upward
closed setS there exists a finite setF of configurations such thatS = {µ′ | µ ≤ µ′, µ ∈
F}. F is called thefinite basisof S. As proved in the following lemma, given a finite
basis of a setS, it is possible to effectively compute the finite basis ofPre(S).

Lemma 4. (ComputingPre) Given a finite basisF of a setS, there exists an algo-
rithm that computes a finite basisF ′ of Pre(S).

Proof The algorithm is defined by cases as follows.

Creation rules Assume e⇀mA ∈ R andµ ∈ F . Then,µ occurs inF ′. Furthermore,
suppose thatµ(m) contains a conformon[A, e]. Then,F ′ also contains the configura-
tionsµ′ that satisfies the following conditions:

• µ′(m) = µ(m)⊖ {{[A, e]}};
• µ′(n) = µ(n) for m 6= n.

Internal rules Assume a ruler = A e→mB ∈ R andµ ∈ F . We have several cases to
consider.

• We first have to consider a possible application ofr to two conformons that are
not explicitly mentioned inµ. This leads to a predecessor configuration in which
we require at least the presence ofA with at least valuee and the presence ofB
with any value. Thus,F ′ contains the configurationsµ′ that satisfies the following
conditions:
∗ µ′(m) = µ(m)⊕ {{[A, e], [B, 0]}};
∗ µ′(n) = µ(n) for m 6= n.

• We now have to consider the application ofr to a conformonA with valuex in µ
and to a conformonB not explicitly mentioned inµ. This leads to a predecessor
configuration in which we require at least the presence ofA with at least value
x + e and the presence ofB with any value. Thus, if[A, x] ∈ µ(m), F ′ contains
the configurationsµ′ that satisfies the following conditions:
∗ µ′(m) = (µ(m) ⊖ {{[A, x]}})⊕ {{[A, x + e], [B, 0]}};
∗ µ′(n) = µ(n) for m 6= n.

• Furthermore, we have to consider the application ofr to a conformonB with value
y ≥ e in µ and to a conformonA not explicitly mentioned inµ. This leads to a
predecessor configuration in which we require at least the presence ofA with at

On the Qualitative Analysis of Conformon P-Systems 35

least valuee and the presence ofB with valuey − e. Thus, if [B, y] ∈ µ(m) and
y ≥ e, F ′ contains the configurationsµ′ that satisfies the following conditions:
∗ µ′(m) = (µ(m)⊖ {{[B, y]}})⊕ {{[A, e], [B, y − e]}};
∗ µ′(n) = µ(n) for m 6= n.

• Finally, we have to consider the application ofr to a conformonB with value
y ≥ e and to a conformonA with valuex both inµ. This leads to a predecessor
configuration in which we require at least the presence ofA with at least value
x + e and the presence ofB with valuey − e. Thus, if [A, x], [B, y] ∈ µ(m) and
y ≥ e, F ′ contains the configurationsµ′ that satisfies the following conditions:
∗ µ′(m) = (µ(m)⊖ {{[A, x], [B, y]}})⊕ {{[A, x + e], [B, y − e]}};
∗ µ′(n) = µ(n) for m 6= n.

Passage rules Assumem
p→֒n ∈ R with p(x) defined byx ≥ e andµ ∈ F . We first

have to consider a possible application ofr to a conformon that is not explicitly men-
tioned inµ. This leads to a predecessor configuration in which we require at least the
presence ofA with at least valuee in membranem. Thus,F ′ contains the configurations
µ′ that satisfies the following conditions:

• µ′(m) = µ(m)⊕ {{[A, e]}};
• µ′(n) = µ(n) for m 6= n.

Furthermore, suppose thatµ(n) contains a conformon[A, x] with x ≥ 0. Then,F ′

contains the configurationsµ′ that satisfies the following conditions:

• µ′(n) = µ(n)⊖ {{[A, x]}};
• µ′(m) = µ(m)⊕ {{[A, v]}};
• µ′(p) = µ(p) for p 6= m, n.

wherev = max(e, x) (the maximum betweene andx).
The correctness follows from a case analysis. 2

Theorem 2. (Decidability of Coverability for Restricted cP-systems)The coverabil-
ity problem is decidable for restrictedcP-systems.

Proof The thesis follows from Lemmas 1, 3, 4, and from [1, Theorem 4.1]. 2

4 Relation with other models

In this section we comparecP-systems with other models used in the concurrency
field, namely the nested Petri nets of [8] and the constrainedmultiset rewriting systems
(CMRS) of [2].

36 On the Qualitative Analysis of Conformon P-Systems

4.2 cP-systems vs nested Petri netsLet us first recall that a Petri net (P/T sys-
tem) [11] is a tuple(P, T, m0) whereP is a finite set ofplaces, T is a finite set of
transitions, andm0 is the initial marking. Intuitively, places correspond to location or
states of a given system. Places are populated with tokens, i.e., indistinguishable ob-
jects, that can be used e.g. to mark a given set of states to model concurrent processes.
Tokens have no internal structure. This means that we are only interested in the mul-
tiplicity of tokens inside a place. Transitions are used to control the flow of tokens in
the net (they define links between different places and regulate the movement of tokens
along the links). More formally, atransition t has a pre-set•t and a post-sett• both
defined by multisets of places inP . A marking is just a multiset with elements inP ,
a mapping fromP to non-negative integers. Given a markingm and a placep, we say
that the placep containsm(p) tokens. A transitiont is enabled at the markingm if •t
is contained as a sub-multiset inm. If it is the case, firingt produces a markingm′,

writtenm
t→ m′, defined as(m⊖• t)⊕ t•.

A Petri net with inhibitor arc is a Petri net in which transitions can be guarded by an
emptyness test on a subset of the places. For instance, a transition with an inhibitor arc
on placep is enabled only whenp is empty.

Nested Petri nets Differently from P/T systems, in anested Petri nettokens have an
internal structure that can be arbitrarily complex (e.g. a token can be a P/T system, or
a P/T system with tokens that are in turn P/T systems, and so on). For instance, a2-
level nested Petri netis defined by a P/T system that describes the whole system, called
system net, and by a P/T system that describes the internal structure oftokens, called
element net.

The transitions of the system net can be used to manipulate tokens as black boxes, i.e.
without changing their internal structure. These kind of transitions are calledtransport
rules(they move complex objects around the places of the system net).
Transitions of the element nets can be used to change the internal structure of a token
without changing the marking of the system net. These kind oftransitions are called
autonomous rules.
Finally, we can use synchronization labels (i.e. labels in system/element net transitions)
to enforce the simultaneous execution of two transitions, one with a labela and one
with a labela. Two possibilities are allowed in Nested Petri nets: the synchronization
of a transition of the system net and of an element net (vertical synchronization), or the
simultaneous execution of transitions of two distinct element nets residing in the same
system place (horizontal synchronization). Notice that vertical synchronization modifies
both the marking of the system net and the internal structureof (some) tokens.

cP-systems as nested Petri netsIn this section we show thatcP-systems can be en-
coded as 2-level nested Petri nets in which the system net is aP/T system and the
element net is a P/T system with inhibitor arcs.

On the Qualitative Analysis of Conformon P-Systems 37

Assume acP-systemΠ = (V, N, R, µ0). We build a 2-level nested Petri nets as follows.
The system net is a P/T system with a placesCONF used to contain all conformons
in a current configuration ofΠ, and a placeCREATEr for each creation ruler ∈ R.
The transitions of the system net are transport rules that model creation rules used to
non-deterministically inject new conformons in the placeCONF . Namely, for each
creation ruler ∈ R we add a transport ruletr with pre-set{{CREATEr}} and post-set
{{CREATEr, CONF}}. We assume here thatCREATEr is initialized with a single
element net that models the conformon created by ruler. The transitiontr makes a copy
of such an element net and puts it in placeCONF .

An element netNc denotes a single conformonc. It is defined by a P/T system with
placesP = V ∪ N ∪ {E}. Only one place of those inN and only one place of those
in V can be marked in the same instant. The marked places correspond to the name and
current location ofc. Furthermore, the number of tokens in placeE denotes the current
amount of energy ofc.

To model an internal ruler = A e→mB we use a horizontal step between two distinct ele-
ment netsN1 andN2, i.e., a pair(tr,1, tr,2) of element net transitions with synchronized
labelsr andr such that:

• •tr,1 has one occurrence ofA, one ofm, ande of E, i.e., it is enabled ifN1

represents a conformon with nameA in membranem and at leaste units of energy;
those units are subtracted from placeE in N1.

• •tr,2 has one occurrence ofB and one ofm, i.e., it is enabled ifN2 represents a
conformon with nameB in membranem.

• t•r,1 has one occurrence ofA and one ofm.

• t•r,2 has one occurrence ofB, one ofm, ande of E, i.e., e units of energy are
transferred to placeE in N2.

To model a passage ruler = m
p→֒n with conditionx ≥ e, we use an autonomous step.

Specifically, we define an element net transitiontr such that:

• •tr has one occurence ofm, ande occurrences ofE, i.e., it is enabled ifN1 is in
membranem and at leaste units of energy.

• t•r has one occurrences ofn, and ande occurrences ofE, i.e.,N1 represents now
a conformon (with the same name) in membranen. Its energy is not changed (we
first subtracte tokens to check the conditionx ≥ e) and then adde tokens back to
placeE in N1).

To model a passage ruler with conditionx = e, we can add to each transitiontr,A with
A ∈ V the test= e on placeE. It is easy to define this test by using P/T transitions with
inhibitor arcs. Rules with conditionsx ≤ e for e > 0 can be encoded by splitting the
test intox = 0, . . . , x = e.

38 On the Qualitative Analysis of Conformon P-Systems

SYSTEM NET

A

B

M N P

3

E
3

ENERGY

CONFORMON NAME

INT

INT

PASS

ELEMENT NET: CONFORMON [A, 4] IN MEMBRANE M

CONF
CREATE

CREATEr

CURRENT MEMBRANE

Fig. 4.1 Example of nested Petri net.

Since each element net maintains information about name, value and location the con-
tent of placeCONF corresponds to the current configuration ofΠ.

Example 2 Assume acP-systemΠ with V = {A, B}, N = {M, L, P}, the creation

rule r = 4⇀MA, the internal ruleINT = A 3→MB, and the passage rulePASS = L
p→֒P

with p(x)
def
= x = 0. The 2-level nested Petri nets that encodes thecP-systemsΠ is

shown in Fig. 4.1. We use here circles to denote places, rectangles to denote transitions,
an arrow from a circle to a rectangle to denote places in the pre-set and an arrow from
a rectangle to a circle to denote places in the post-sets of transitions; we label arrows
with numbers to indicate a multiplicity greater than1 of a place in the pre-/post-set. An
inhibitor arc is represeted by an arrow with a circle. The system net placeCREATEr

is used to keep a copy of the conformon[A, 4] so as to non-deterministically inject new
ones in the current configuration (i.e. the placeCONF). The element net has places
to model names, membranes, and energy. The internal rule is modelled by the pair
of transitions with labelsINT andINT . When executed simultaneously (within the
placeCONF of the system net) by two distinct element net (one executesINT and
the other executesINT) their effect consists in moving 3 tokens from the placeE of
an element net with tokens inA, M to the placeE of an element net with tokens in
the placesB, M . Notice that tokens of the element nets are objects with no structure.

On the Qualitative Analysis of Conformon P-Systems 39

The passage rule is modelled by the element net transition with labelPASS. It simply
checks thatE is empty with an inhibitor arc and then moves a token from the placeN
to the placeP (it changes the location of the element net). Notice that thesystem net
placeCONF may contain an arbitrary number of element nets (the corresponding P/T
system is unbounded).

It is important to notice that 2-level nested Petri nets in which element nets have in-
hibitor arcs are Turing equivalent [9]. This result is consistent with the analysis of the
expressive power of fullcP-systems [5]. From the previous observations, restrictedcP-
systems are a subclass of nested Petri nets in which both the system and the element nets
are defined by P/T systems. From the results obtained for well-structured subclasses of
nested Petri nets in [9], we obtain an indirect proof for decidability of coverabilityof
restrictedcP-systems.

The connection betweencP-systems and nested nets can be exploit to extend the model
in several ways. As an example, for restricted passage rules, coverability remains decid-
able when extendingcP-systems with: conformons defined by a list of pairs name-value
instead of a single pair; rules thattransferall the energy fromA to B; or conformons de-
fined by a state machine (i.e. with an internal state instead of statically assigned type).

4.3 RestrictedcP-systems vs CMRS RestrictedcP-systems can also be modelled
in CMRS, an extension of Petri nets in which tokens carry natural numbers.

Constrained multiset rewriting systems (CMRS) CMRS [2] are inspired to formu-
lations of colored Petri nets in term rewriting. A token withdatad in placep is rep-
resented here as a termp(d), a marking as a multiset of terms, and a transition as a
(conditional) multiset rewriting rule. More precisely, let termbe an elementp(x) where
p belong to a finite set of predicate symbolsP (places) andx is a variable ranging over
natural numbers. We often call a termp(t) with p ∈ P a p-termor P -term. A element
p(v) with p ∈ P andv ∈ N0 is called aground term.
A configuration is a (finite) multiset of ground terms. A CMRS is a set of rewriting rules
with constraints of the formr = L ; R : Ψ that allows to transform (rewrite) multisets
into multisets. More precisely,L andR are multisets of terms (with variables) andΨ is
a (possibly empty) finite conjunction ofgap-orderconstraints of the form:x + c < y,
x ≤ y, x = y, x < c, x > c, x = c wherex, y are variables appearing inL and/orR
andc ∈ N0 is a constant.
A rule r is enabled at a configurationc if there exists a valuation of the variablesV al
such thatV al(Ψ) is satisfied. Firingr atc leads to a new multisetc′, notedc

r→ c′, with
c′ = c ⊖ V al(L) ⊕ V al(R) whereV al(L), resp.V al(R), is the multiset of ground
terms obtained fromL, resp.R, by replacing each variablex by V al(x).

As an example, consider the CMRS rule:

ρ = [p(x) , q(y)] ; [q(z) , r(x) , r(w)] : {x + 2 < y , x + 4 < z , z < w}

40 On the Qualitative Analysis of Conformon P-Systems

A valuation which satisfies the condition isV al(x) = 1, V al(y) = 4, V al(z) =
8, andV al(w) = 10. A CMRS configuration is a multisets of ground terms, e.g.,
[p(1), p(3), q(4)]. Therefore, we have that[p(1), p(3), q(4)]

ρ→ [p(3), q(8), r(1), r(10)].

A CMRS is well-structured with respect to the well-quasi ordering�c defined as fol-
lows. Given a configurationc, let V (c) = {i ∈ N0 | ∃p(i) ∈ c}, andc=i : P 7→ N0

with i ∈ N0 be the multi set such thatc=i(p) = c(pi) for anyp ∈ P. Then, we have
thatc �c c′ iff there exists an injective functionh : V (c) 7→ N0 such that (i) for any
i ∈ V (c) : c=i ≤ c′=h(i); (ii) for any i ∈ V (c) s.t. i ≤ cmax : i = h(i); (iii) for any
i, j ∈ V (c)∪{0} s.t.i < j andj > cmax : j− i < h(j)−h(i). A symbolic algorithm
to check coverability – w.r.t.�c – is described in [2].

Restricted cP-systems as CMRS A cP-configurationµ is mapped to a CMRS con-
figuration as follows. A conformonc = [A, x] in membranem is represented by means
of a multiset of terms

Mv
c,m = [confA,m(v)]⊕Ov

x

whereOx
v is the multiset withx occurrences of the termu(v), i.e.,

Ov
x = [u(v), . . . , u(v)︸ ︷︷ ︸

x−times

]

wherev is a natural number used as a unique identifier for the conformon c. Theu-
terms with parameterv are used to count the amount of energy of conformon with
identifierv. E.g. if c = [ATP, 4] thenM2

c,m = [confATP,m(2), u(2), u(2), u(2), u(2)]
– 4 occurrences ofu(2) – where2 is the unique identifier of conformonc. Furthermore,
if c = [ATP, 0], thenM2

c,m = [confATP,m(2)]. Thus, we use[confA,m(v)] to model a
conformon with zero energy and identifierv.

A representationRep(µ) of a cP-configurationµ is obtained by assigning a distinct in-
dentifier to each conformon and by taking the (multiset) union of the representations of
each conformons inµ. Formally, letµ containsr membranes such thatµ(mi) contains
the conformonsc1,i, . . . , ci,ni

for i : 1, . . . , r andn1 + . . . + nr = k, then

Rep(µ)V = (

n1⊕

j=1

Mv1,j
c1,j ,m1

)⊕ . . .⊕ (

nr⊕

j=1

Mvr,j
cr,j ,mr

)

whereV = (v1,1, . . . , v1,n1 , . . . , vr,1, . . . , vr,nr
) arek distinct natural numbers working

as identifiers of thek conformons inµ. Identifiers of conformons in the initial configu-
rationµ0 are non-deterministically chosen at the beginning of the simulation using the
following rule:

[init] ; [fresh(v)] ⊕Rep(µ0)
V : {v1,1 < . . . < v1,n1 < vr,1 < vr,nr

< v}
whereV is a vector of variables that denotes conformon indentifiers(as described in
the def. ofRep(µ)V). Furthermore, we maintain a fresh identifierv in thefresh-term
(used to dynamically create other conformons).

On the Qualitative Analysis of Conformon P-Systems 41

The rules of a restrictedcP-system are simulated via the following CMRS rules working
on CMRS representations of configurations.

• Creation ofc = [A, x] insidem:

[fresh(x)] ; [fresh(y)]⊕Mx
c,m : {x < y}

We simply inject a new multiset of terms with parameterx stored in thefresh-
term and reset the fresh value.

• A andB in membranem exchangee units of energy:

[confA,m(x), confB,m(y)]⊕Ox
e ; [confA,m(x), confB,m(y)]⊕Oy

e : true

Notice that, by definition of the CMRS operational semantics, the rule is enabled
only when there are at leaste occurrences ofu-terms with parameterx (identifier
of A) and where there exists a conformonB with identifiery (x andy are variables
ranging over natural numbers). The passage of energy fromA (with identifierx)
to B (with identifiery) is simply defined by changing the parameterx of e occur-
rences ofu-terms intoy.

• Passage rule from membranem to n conditioned by the predicatep(x)
def
= x ≥ c:

For each conformon nameA:

[confA,m(x)] ⊕Ox
c ; [confA,n(x)] ⊕Ox

c

Notice that, by definition of the CMRS operational semantics, the rule is enabled
only when there are at leastc occurrences ofu-terms with parameterx (identifier
of A). The current location ofA is stored in the termconfA,m(x). The passage to
membranen is defined by changing the termconfA,m(x) into confA,n(x). The
u-terms with the same parameter are not consumed (i.e. they occur both in the
left-hand side and in the right-hand side of the rule).

From the results obtained for CMRS [2], we obtain another indirect proof for decidabil-
ity of coverabilityof restrictedcP-systems. The connection betweencP-systems and
CMRS can be used to devise extensions of the conformon model in which, e.g., con-
formon have different priorities or ordered with respect tosome other parameter. This
can be achieved by ordering the parameters of the multiset ofterms used to encode
each conformon. CMRS rules can deal with such an ordering by using conditions on
parameters of terms in a rule of the formx < y.

5 Related Work and Conclusions

In the paper we have investigated the decidability of computational properties of con-
formon P-systems like reachability and coverability. Morespecifically, we have shown
that, although undecidable for the full model, the coverability problem is decidable for
a fragment with restricted types of predicates in passage rules.

42 On the Qualitative Analysis of Conformon P-Systems

To our knowledge, this is the first work devoted to the qualitative analysis of conformon
P-systems, and to the comparison with other models like nested Petri nets and CMRS.
The expressiveness of the conformon P-systems is studied in[5] by using a reduction to
counter machines with zero test (Turing equivalent). We usesuch a result to show that
coverability is undecidable for the full model. The decidability or reachability for the
full model is not in contrast with its great expressive power. Indeed, in the reachability
problem the target configuration contains precise information about the history of the
computation, e.g., the total amount of energy exchanged during the computation. These
information cannot be expressed in the coverability problem, where we can only fix part
of the information of target configurations. In this sense, coverability seems a better
measure for the expressiveness of this kind of computational models.

In the paper we have compared this result with similar results obtained for other models
like nested Petri nets and constrained multiset rewriting systems. The direct proof pre-
sented in the paper and the corresponding algorithm can be viewed however as a first
step towards the development of automated verification tools for biologically inspired
models. The kind of qualitative analysis that can be performed using our algorithm is
complementary to the simulation techniques used in quantitative analysis of natural and
biological systems. Indeed, in qualitative analysis we consider all possible executions
with no probability distributions on transitions, whereasin quantitative analysis one
often considers a single simulation by associating probabilities to each single transi-
tions. Unfortunately, the rates of reactions are often unknown and, thus, extrapolated
from known data to make the simulation feasible. Qualitative analysis requires instead
only the knowledge of the dynamics of a given natural model. Automated verification
methods can thus be useful to individuate structural properties of biological models.

Acknowledgements. Research fellow supported by the Belgian National Science Foun-
dation.

Bibliography

[1] P. A. Abdulla, K.Čer āns, B. Jonsson, and T. Yih-Kuen. General decidabilitythe-
orems for infinite-state systems. LICS ’96: 313–321.

[2] P. A. Abdulla and G. Delzanno: On the Coverability Problem for Constrained Mul-
tiset Rewriting Systems. AVIS ’06 (ETAPS-workshop). Available in the authors’
home page.

[3] Z. Dang, O. Ibarra, C. Li, G. Xie. On Model Checking of P Systems. UC 2005:
82-93.

[4] A. Finkel, Ph. Schnoebelen. Well-structured transition systems everywhere! TCS
256(1-2), 2001: 63-92.

[5] P. Frisco. The conformon-P system: a molecular and cell biology-inspired com-
putability model. TCS 312(2-3), 2004: 295-319.

On the Qualitative Analysis of Conformon P-Systems 43

[6] P.Frisco and D. W. Corne. Dynamics of HIV infection studied with Cellular Au-
tomata and conformon-P systems, BioSystems 91 (3), 2008: 531-544.

[7] G. Higman. Ordering by divisibility in abstract algebras. London Math. Soc. (3),
2(7), 1952: 326336.

[8] I. A. Lomazova. Nested petri nets. Fundamenta Informaticae 43(1-4), 2000: 195 -
214.

[9] I. A. Lomazova and Ph. Schnoebelen. Some Decidability Results for Nested Petri
Nets. Ershov Mem. Conf. 1999: 208-220.

[10] G. Paun. Computing with membranes. JCSS 61(1), 2000: 108-143.
[11] W. Reisig. Petri Nets: An Introduction. Springer, 1985.

Dual P Systems

———————————————
Oana Agrigoroaiei1 and Gabriel Ciobanu1,2

1Romanian Academy, Institute of Computer Science
Blvd. Carol I no.8, 700505 Iaşi, Romania
oanaag@iit.tuiasi.ro

2“A.I.Cuza” University of Iaşi, Faculty of Computer Science
Blvd. Carol I no.11, 700506 Iaşi, Romania
gabriel@info.uaic.ro

This paper aims to answer the following question: given a P system configu-
rationM , how do we find each configurationN such thatN evolves toM in
one step? While easy to state, the problem has not a simple answer. To pro-
vide a solution to this problem for a general class of P systems with simple
communication rules and without dissolution, we introducethe dual P systems.
Essentially these systems reverse the rules of the initial Psystem and findN by
applying reversely valid multisets of rules. We prove that in this way we find
exactly those configurationsN which evolve toM in one step.

1 Introduction

Often when solving a (mathematical) problem, one starts from the end and tries to reach
the hypothesis. P systems [4] are often used to solve problems, so finding a method
which allows us to go backwards is of interest. When looking at a cell-like P system
with rules which only involve object rewriting (of typeu→ v, whereu, v are multisets
of objects) in order to reverse a computation it is natural toreverse the rules (u → v
becomesv → u) and find a condition equivalent to maximal parallelism. Thedual P sys-
temΠ̃ is the one with the same membranes asΠ and the rules ofΠ reversed. However,
when rules of typeu → (v, out) or u → (v, inchild) are used, two ways of reversing
computation appear. The one we focus on is to employ a specialtype of rule reversal
and to move the rules between membranes: for example,u → (v, out) associated to
the membrane with labeli in Π is replaced withv → (u, ini) associated to the mem-
brane with labelparent(i) in Π̃. This is described in detail in Section 4. Another way
of defining the dual P system is by reversing all the rules without moving them between
membranes (and thus allow rules of form(v, out)→ u). To capture the backwards com-
putation we have to move objects according to the existence of communicating rules in
the P system. The object movement corresponds to reversing the message sending stage
of the evolution of a membrane. After that the maximally parallel rewriting stage is
reversed. This is only sketched in Section 5 as a starting point for further research.

46 Dual P Systems

The structureµ of a P system is represented by a tree structure (with theskin as its
root), or equivalently, by a string of correctly matching parentheses, placed in a unique
pair of matching parentheses; each pair of matching parentheses corresponds to a mem-
brane. Graphically, a membrane structure is represented bya Venn diagram in which
two sets can be either disjoint, or one a subset of the other. The membranes are labelled
in a one-to-one manner. A membrane without any other membrane inside is said to be
elementary.

A membrane systemof degreem is a tupleΠ = (O, µ, w1, . . . wm, R1, . . . , Rm, io)
where:

• O is an alphabet of objects;
• µ is a membrane structure, with the membranes labelled by natural numbers1, . . . ,

m, in a one-to-one manner;
• wi are multisets overO associated with the regions1, . . . , m defined byµ;
• R1, . . . , Rm are finite sets of rules associated with the membranes with labels

1, . . . , m; the rules have the formu → v, whereu is a non-empty multiset of
objects andv a multiset over messages of the form(a, here), (a, out), (a, inj);

The membrane structureµ and the multisets of objects and messages from its com-
partments define aintermediate configurationof a P system. If the multisets from its
compartments contain only objects, they define aconfiguration. For a intermediate con-
figurationM we denote bywi(M) the multiset contained in the inner membrane with
labeli. We denote byC#(Π) the set of intermediate configurations and byC(Π) the set
of configurations of the P systemΠ.

Since we work with two P systems at once (namelyΠ and Π̃), we use the notation
RΠ

1 , . . . , RΠ
m for the sets of rulesR1, . . . , Rm of the P systemΠ.

We consider a multisetw over a setS to be a functionw : S → N. When describing a
multiset characterised by, for example,w(s) = 1, w(t) = 2, w(s′) = 0, s′ ∈ S\{s, t},
we use its string representations+2t, to simplify its description. To each multisetw we
associate its support, denoted bysupp(w), which contains those elements ofS which
have a non-zero image. A multiset is called non-empty if it has non-empty support. We
denote the empty multiset by0S . The sum of two multisetsw, w′ overS is the multiset
w + w′ : S → N, (w + w′)(s) = w(s) + w′(s). For two multisetsw, w′ overS we
say thatw is contained inw′ if w(s) ≤ w′(s), ∀s ∈ S. We denote this byw ≤ w′. If
w ≤ w′ we can definew′ − w by (w′ − w)(s) = w′(s) − w(s). To work in a uniform
manner, we consider all multisets of objects and messages tobe over

Ω = O ∪O × {out} ∪O × {inj | j ∈ {1, . . . , m}}

Definition 1 The setM(Π) of membranes in a P systemΠ together with the membrane
structure are inductively defined as follows:

Dual P Systems 47

• if i is a label andw is a multiset overO ∪O × {out} then〈i|w〉 ∈ M(Π); 〈i|w〉
is called anelementary membrane, and its structure is〈〉;

• if i is a label,M1, . . . , Mn ∈ M(Π), n ≥ 1 have distinct labelsi1, . . . , in, each
Mk has structureµk andw is a multiset overO∪O×{out}∪O×{ini1 , . . . , inin

}
then〈i|w; M1, . . . , Mn〉 ∈ M(Π); 〈i|w; M1, . . . , Mn〉 is called acomposite mem-
brane, and its structure is〈µ1 . . . µn〉.

Note that if i is the label of the skin membrane then〈i|w; M1, . . . , Mn〉 defines an
intermediate configuration.

We use the notationsparent(i) for the label indicating the parent of the membrane
labelled byi (if it exists) andchildren(i) for the set of labels indicating the children of
the membrane labelled byi, which can be empty.

By simplecommunication rules we understand that all rules inside membranes are of
the formu→ v whereu is a multiset of objects (supp(u) ⊆ O) andv is either a multiset
of objects, or a multiset of objects with the messageinj (supp(v) ⊆ O × {inj} for a
j ∈ {1, . . . , m}) or a multiset of objects with the messageout (supp(v) ⊆ O×{out}).
Moreover we suppose that theskin membrane does not have any rules involving objects
with the messageout.

We use multisets of rulesR : RΠ
i → N to describe maximally parallel application of

rules. For a ruler = u → v we use the notationslhs(r) = u, rhs(r) = v. Similarly,
for a multisetR of rules fromRΠ

i , we define the following multisets overΩ:

lhs(R)(o) =
∑

r∈RΠ
i

R(r) · lhs(r)(o) andrhs(R)(o) =
∑

r∈RΠ
i

R(r) · rhs(r)(o)

for each object or messageo ∈ Ω. The following definition captures the meaning of
“maximally parallel application of rules”:

Definition 2 We say that a multiset of rulesR : RΠ
i → N is valid in the multisetw if

lhs(R) ≤ w. The multisetR is calledmaximally validin w if it is valid in w and there
is no ruler ∈ RΠ

i such thatlhs(r) ≤ w − lhs(R).

2 P Systems with One Membrane

Suppose that the P systemΠ consists only of theskin membrane, labelled by1. Since
the membrane has no children and we have assumed it has no rules concerningout
messages, all its rules are of formu → v, with supp(u), supp(v) ⊆ O. Given the
configurationM in the systemΠ = (O, µ, w1, R

Π
1) we want to find all configurations

48 Dual P Systems

N such thatN rewrites toM in a single maximally parallel rewriting step. To do this
we define the dual P system̃Π = (O, µ, w1, R

eΠ
1), with evolution rules given by:

(u→ v) ∈ R
eΠ
1 if and only if (v → u) ∈ RΠ

1

For eachM = 〈1|w〉 ∈ C#(Π), we consider the dual intermediate configuratioñM =

〈1|w〉 ∈ C#(Π̃) which has the same content (w = w1(M̃) = w1(M)) and membrane
structure asM . Note that the dual of a configuration is a configuration. The notationM̃
is used to emphasize that it is an intermediate configurationof the system̃Π.

The namedual is used for the P system̃Π under the influence of category theory, where
the dual category is the one obtained by reversing all arrows.

Remark 1 Note that using the term ofdualfor Π̃ is appropriate becausẽ̃Π = Π.

When we reverse the rules of a P system, dualising the maximally parallel application
of rules requires a different concept than themaximal validityof a multiset of rules.

Definition 3 The multisetR : RΠ
i → N is calledreversely validin the multisetw if it

is valid inw and there is no ruler ∈ RΠ
i such thatrhs(r) ≤ w − lhs(R).

Note that the difference frommaximally validis that here we use the right-hand side of
a ruler in rhs(r) ≤ w − lhs(R), instead of the left-hand side.

Example 1 Consider the configurationM = 〈1|b + c〉, in the P system̃Π with O =
{a, b, c}, µ = 〈〉 and with evolution rulesRΠ

1 = {r1, r2}, wherer1 = a → b, r2 =

b → c. ThenM̃ = 〈1|b + c〉 ∈ C(Π̃), with evolution rulesReΠ
1 = {r̃1, r̃2}, where

r̃1 = b→ a, r̃2 = c→ b. The valid multisets of rules inw1(M̃) = b+ c are0
R

eΠ
1
, r̃1, r̃2

andr̃1+ r̃2. The reversely valid multiset of rules̃R in w(M̃1) can be either̃r1 or r̃1+ r̃2.
If R̃ = r̃1 thenM̃ rewrites to〈1|a + c〉; if R̃ = r̃1 + r̃2 thenM̃ rewrites to〈1|a + b〉.
These yield the only two configurations that can evolve toM in one maximally parallel
rewriting step (inΠ). This example clarifies why reversely valid multisets of rules must
be applied: validity ensures that some objects are consumedby rulesr̃ (dually, they were
produced by some rulesr) and reverse validity ensures that objects likeb (appearing in
both the left and right-hand sides of rules) are always consumed by rules̃r (dually,
they were surely produced by some rulesr, otherwise it would contradict maximal
parallelism for the multisetR).

Note that ifM ′ = 〈1 | 2a〉 in the P systemΠ, then there is no multiset of rules̃R valid in
w1(M̃ ′) = 2a for the dualM̃ ′. This happens exactly because there is no configuration
N ′ such thatN ′ rewrites toM ′ by applying at least one of the rulesr1, r2.

Dual P Systems 49

We present the operational semantics for both maximally parallel application of rules
(mpr) and inverse maximally parallel application of rules (̃mpr) on configurations in a
P system with one membrane.

Definition 4

• 〈1|w〉 R→mpr 〈1|w − lhs(R) + rhs(R)〉 if and only ifR is maximally valid inw;

• 〈1|w〉 R→gmpr 〈1|w − lhs(R) + rhs(R)〉 if and only ifR is reversely valid inw.

The difference between the two semantics is coming from the difference between the
conditions imposed on the multisetR (maximally valid and reversely valid, respec-
tively).

For a multisetR of rules overRΠ
1 we denote byR̃ the multiset of rules overReΠ

1 for
which R̃(u→ v) = R(v → u). Thenlhs(R) = rhs(R̃) andrhs(R) = lhs(R̃).

Proposition 1 N
R→mpr M if and only ifM̃

eR→gmpr Ñ .

Proof If N
R→mpr M thenR is maximally valid inw1(N) andw1(M) = w1(N) −

lhs(R) + rhs(R); thenw1(M) − rhs(R) = w1(N) − lhs(R). By duality, we have
w1(M) = w1(M̃) andrhs(R) = lhs(R̃); it follows thatw1(M̃)−lhs(R̃) = w1(N)−
lhs(R) ≥ 0, thereforelhs(R̃) ≤ w1(M̃), and soR̃ is valid in M̃ . SupposeR̃ is not

reversely valid inw1(M̃), i.e. there exists̃r ∈ R
eΠ
1 such thatrhs(r̃) ≤ w1(M̃)−lhs(R̃),

which is equivalent tolhs(r) ≤ w1(M)−rhs(R). Sincew1(M)−rhs(R) = w1(N)−
lhs(R) it follows thatR is not maximally valid inw1(N), which yields a contradiction.

If M̃
eR→gmpr Ñ thenR̃ is reversely valid inw1(M̃); sincew1(N)−lhs(R) = w1(M̃)−

lhs(R̃) ≥ 0 it follows thatR is valid inw1(N). If we suppose thatR is not maximally
valid in w1(N) then, reasoning as above, we obtain thatR̃ is not reversely valid in
w1(M̃)(contradiction).2 2

3 P Systems without Communication Rules

If the P system has more than one membrane but it has no communication rules (i.e.
no rules of formu → v, with supp(v) ⊆ O × {out} or supp(v) ⊆ O × {inj}) the
method of reversing the computation is similar to that described in the previous section.
We describe it again but in a different way, since here we introduce the notion of a
(valid) system of multisets of rules for a P systemΠ. This notion is useful for P systems
without communication rules, and is fundamental in reversing the computation of a P

50 Dual P Systems

system with communication rules. This section provides a technical step from Section
2 to Section 4.

Definition 5 A systemof multisets of rules for a P systemΠ of degreem is a tuple
R = (R1,R2, . . . ,Rm), where eachRi is a multiset overRΠ

i , i ∈ {1, . . . , m}.

A system of multisets of rulesR is calledvalid, maximally validor reversely valid
in the configurationM if eachRi is valid, maximally valid or reversely valid in the
multisetwi(M), which, we recall, is the multiset contained in the inner membrane of
configurationM which has labeli.

The P system̃Π dual to the P systemΠ is defined analogously to the one in Section 2:
Π̃ = (O, µ, w1, . . . wm, R

eΠ
1 , . . . , R

eΠ
m) where(u → v) ∈ R

eΠ
1 if and only if (v → u) ∈

RΠ
1 . Note that˜̃Π = Π.

If R = (R1, . . . ,Rm) is a system of multisets of rules for a P systemΠ, we denote by
R̃ the system of multisets of rules for the dual P systemΠ̃ given byR̃ = (R̃1, . . . , R̃2).

Example 2 Consider the configurationM = 〈1|b + c; N〉, N = 〈2|2a〉 of the P system
Π with evolution rulesRΠ

1 = {r1, r2}, RΠ
2 = {r3, r4}, wherer1 = a→ c, r2 = d→ c,

r3 = a + b → a, r4 = a → d. ThenM̃ = 〈1|b + c; 〈2|2a〉〉, with evolution rules

R
eΠ
1 = {r̃1, r̃2}, R

eΠ
2 = {r̃3, r̃4}, wherer̃1 = c → a, r̃2 = c → d, r̃3 = a → a + b,

r̃4 = d→ a. In order to find all membranes which evolve toM in one step, we look for a
systemR̃ = (R̃1, R̃2) of multisets of rules, which is reversely valid in the configuration
M̃ . ThenR̃1 can be either0

R
eΠ
1
, r̃1 or r̃2 and the only possibility for̃R2 is 2r̃3. We apply

R̃ to theskin membranẽM and we obtain three possible configurationsP̃ such that
P ⇒ M ; namely,P can be either〈1|b + c; 〈2|2a + 2b〉〉 or 〈1|b + a; 〈2|2a + 2b〉〉 or
〈1|b + d; 〈2|2a + 2b〉〉.

1

�

�

�

�

b + c
r1 : a → c
r2 : d → c

2

�
�

�

2a
r3 : a + b → a

r4 : a → d

dual
−−−→ 1

�

�

�

�

b + c
er1 : c → a
er2 : c → d

2

�
�

�

2a
er3 : a → a + b

er4 : d → a

We give a definition of the operational semantics for both maximally parallel application
of rules (mpr) and inverse maximally parallel application of rules (̃mpr) in aP system
without communication rules. We useR as label to suggest that rule application is done
simultaneously in all membranes, and thus to prepare the waytoward the general case
of P systems with communication rules.

Dual P Systems 51

Definition 6 For M, N ∈ C(Π) we define:

• M
R→mpr N if and only ifR = (R1, . . . ,Rm) is maximally valid inM and

wi(N) = wi(M)− lhs(Ri) + rhs(Ri);

• M
R→gmpr N if and only ifR = (R1, . . . ,Rm) is reversely valid inM and

wi(N) = wi(M)− lhs(Ri) + rhs(Ri).

The two operational semantics are similar in their effect onthe membranes, but differ
in the conditions required for the multisets of rulesR.

Proposition 2 If N ∈ C(Π), then

N
R→mpr M if and only ifM̃

eR→gmpr Ñ

Proof If N
R→mpr M thenR is maximally valid in the configurationN , which means

thatRi is maximally valid inwi(N), andwi(M) = wi(N)− lhs(Ri) + rhs(Ri). By
using the same reasoning as in the proof of Proposition 1 it follows thatR̃i is reversely
valid in wi(M̃), for all i ∈ {1, . . . , m}. ThereforeR̃ is reversely valid in the configu-
rationM̃ of the dual P system̃Π. Moreover, we havewi(Ñ) = wi(M̃) − lhs(R̃i) +

rhs(R̃i), soM̃
eR→gmpr Ñ .

If M̃
eR→gmpr Ñ the proof follows in the same manner.2 2

4 P Systems with Communication Rules

When theP system has communication rules we no longer can simply reverse the rules
and obtain a reverse computation; we also have to move the rules between membranes.
When saying that we move the rules we understand that the dualsystem can have rules
r̃ associated to a membrane with labeli while r is associated to a membrane with label
j (j is either the parent or the child ofi, depending on the form ofr). We need a few
notations before we start explaining in detail the movementof rules.

If u is a multiset of objects (supp(u) ⊆ O) we denote by(u, out) the multiset with
supp(u, out) ⊆ O × {out} given by(u, out)(a, out) = u(a), for all a ∈ O. More
explicitly, (u, out) has only messages of form(a, out), and their number is that of the
objectsa in u. Given a labelj, we define(u, inj) similarly: supp(u, inj) ⊆ O×{inj}
and(u, inj)(a, inj) = u(a), for all a ∈ O.

The P system̃Π dual to the P systemΠ is defined differently from the case ofP systems
without communication rules:̃Π = (O, µ, w1, . . . wm, R

eΠ
1 , . . . , R

eΠ
m) such that:

52 Dual P Systems

1. r̃ = u→ v ∈ R
eΠ
i if and only if r = v → u ∈ RΠ

i ;

2. r̃ = u→ (v, out) ∈ R
eΠ
i if and only if r = v → (u, ini) ∈ RΠ

parent(i);

3. r̃ = u→ (v, inj) ∈ R
eΠ
i if and only if r = v → (u, out) ∈ RΠ

j , i = parent(j);

whereu, v are multisets of objects. Note the difference between rule duality when there
are no communication rules and the current class of P systemswith communication
rules.

Proposition 3 The dual of the dual of a P system is the initial P system:
˜̃
Π = Π

Proof Clearly,u → v ∈ R
eeΠ
i iff u → v ∈ RΠ

i . Moreover,̃r̃ = u → (v, out) ∈ R
eeΠ
i

iff r̃ = v → (u, ini) ∈ R
eΠ
parent(i) which happens iffr = u → (v, out) ∈ RΠ

i (the

condition related to the parent amounts toparent(i) = parent(i)). Then,˜̃r = u →
(v, inj) ∈ R

eeΠ
i iff r̃ = v → (u, out) ∈ R

eΠ
j and i = parent(j), which happens iff

r = u→ (v, inj) ∈ RΠ
parent(j)=i. 2 2

If R = (R1, . . . ,Rm) is a system of multisets of rules for a P systemΠ we also need a
different dualisation for it. Namely, we denote bỹR the system of multisets of rules for
the dual P system̃Π given byR̃ = (R̃1, . . . , R̃2), such that:

• if r̃ = u→ v ∈ R
eΠ
i thenR̃i(r̃) = Ri(r);

• if r̃ = u→ (v, out) ∈ R
eΠ
i thenR̃i(r̃) = Rparent(i)(r);

• if r̃ = u→ (v, inj) ∈ R
eΠ
i thenR̃i(r̃) = Rj(r).

Example 3 ConsiderM = 〈1|d; N〉, N = 〈2|c + e; P 〉, P = 〈3|c〉 in the P system
Π with RΠ

1 = {r1, r2}, RΠ
2 = {r3, r4} andRΠ

3 = {r5}, wherer1 = a → (c, in2),
r2 = a → c, r3 = e → (c, in3), r4 = a → (d, out) and r5 = b → (e, out).

ThenM̃ = 〈1|d; 〈2|c + e; 〈3|c〉〉〉 in the dual P system̃Π, with R
eΠ
1 = {r̃2, r̃4}, R

eΠ
1 =

{r̃1, r̃5}, R
eΠ
3 = {r̃3}, wherer̃1 = c → (a, out), r̃2 = c → a, r̃3 = c → (e, out),

r̃4 = d → (a, in2) and r̃5 = e → (b, in3). For a system of multisets of rulesR =

(r1 + r2, 2r4, 3r5) in Π the dual isR̃ = (2r̃4 + r̃2, r̃1 + 3r̃5, 0R
eΠ
3
).

Dual P Systems 53

M 1

'

&

$

%

d
r1 : a → (c, in2)

r2 : a → c

2

�

�

�

�
c + e

r3 : e → (c, in3)
r4 : a → (d, out)

3

�

�
	c

r5 : b → (e, out)

dual
−−−→ 1

'

&

$

%

d
er2 : c → a

er4 : d → (a, in2)

2

�

�

�

�
c + e

er1 : c → (a, out)
er5 : e → (b, in3)

3

�

�
	c

er3 : c → (e, out)

fM

The definitions for validity and maximal validity of a systemof multisets of rules are
the same as in Section 3. However, we need to extend the definition of reverse validity
to describe situations arising from a rule being moved.

Definition 7 A system of multisets of rulesR = (R1, . . . ,Rn) for a P systemΠ is
called reversely validin the configurationM if:

• R is valid in the configurationM (i.e. lhs(Ri) ≤ wi(M));

• ∀i ∈ {1, . . . , m}, there is no ruler = u → v ∈ RΠ
i such thatrhs(r) = v ≤

wi(M)− lhs(Ri);

• ∀i ∈ {1, . . . , m} such that there existsparent(i), there is no ruler = u →
(v, ini) ∈ RΠ

parent(i) such thatv ≤ wi(M)− lhs(Ri);

• ∀i, j ∈ {1, . . . , m} such thatparent(j) = i, there is no ruler = u → (v, out) ∈
RΠ

j such thatv ≤ wi(M)− lhs(Ri).

While this definition is more complicated than the one in Section 3, it can be seen in
the proof of Proposition 4 that it is exactly what is requiredto reverse a computation in
which a maximally parallel rewriting takes place.

Example 3 continued.We look forR̃ reversely valid inM̃ . SinceR̃ must be valid,̃R1

can be equal to0
R

eΠ
1

or r̃4; R̃2 equal to0
R

eΠ
2

, r̃1, r̃5 or r̃1 + r̃5; R̃3 equal to0
R

eΠ
3

or r̃3.
According to Definition 7, we can look at any of those possibilities forRi to see if it
can be a component of a reversely valid systemR. In this example the only problem
(with respect to reverse validity) appears wheñR2 = 0

R
eΠ
2

or whenR̃2 = r̃1, since in

both cases we havee ≤ w2(M̃) − lhs(R̃2) and rulec → (e, out) ∈ R
eΠ
3 . Let us see

why we exclude exactly these two cases. SupposeR̃2 = r̃1 and, for example,̃R1 = r̃4,
R̃3 = r̃3. If R̃ is applied,̃M rewrites to〈1|(a, in2); 〈2|(a, out) + e; 〈3|(e, out)〉〉〉; after
message sending, we obtain〈1|a; 〈2|a + 2e; 〈3|0O〉〉〉 which cannot rewrite toM while
respecting maximal parallelism (otherwise there would appear twoc’s in the membrane
P with label3). The same thing would happen wheñR2 = 0

R
eΠ
2

.

54 Dual P Systems

In P systems with communication rules we work with both rewriting and message send-
ing. We have presented two semantics for rewriting in Section 3:→mpr (maximally
parallel rewriting) and→gmpr (inverse maximally parallel rewriting). They are also used
here, with the remark that the notion ofreversely valid systemhas been extended (see
Definition 7).

Before giving the operational semantics for message sending we present a few more
notations. Given a multisetw : Ω→ N we define the multisetsobj(w), out(w), inj(w)
which consist only of objects (i.e.supp(obj(w)), supp(out(w)), supp(inj(w)) ⊆ O),
as follows:

• obj(w) contains all the objects fromw: obj(w)(a) = w(a), ∀a ∈ O;
• out(w) contains all the objectsa which are part of a message(a, out) in w:

out(w)(a) = w(a, out), ∀a ∈ O;
• inj(w) contains all the objectsa which are part of a message(a, inj) in w: inj(w)

(a) = w(a, inj), ∀a ∈ O, ∀j ∈ {1, . . . , m}.

Definition 8 For a intermediate configurationM , M →msg N if and only if

wi(N) = obj(wi(M)) + ini(wparent(i)(M)) +
∑

j∈children(i)

out(wj(M))

To elaborate, the message sending stage consists of erasingmessages from the multiset
in each inner membrane with labeli, adding to each such multiset the objectsa cor-
responding to messages(a, ini) in the parent membrane (inner membrane with label
parent(i)) and furthermore, adding the objectsa corresponding to messages(a, out)
in the children membranes (all inner membranes with labelj, j ∈ children(i)).

Proposition 4 If M is a configuration ofΠ then

M
R→mpr→msg N impliesÑ

eR→gmpr→msg M̃.

If Ñ is a configuration of̃Π then

Ñ
eR→gmpr→msg M̃ impliesM

R→mpr→msg N.

Proof We begin by describing some new notations. Consider a systemof multisets of
rulesR = (R1, . . . ,Rm) for a P systemΠ with evolution rulesRΠ

1 , . . . , RΠ
m. We define

the following multisets of objects:

Dual P Systems 55

lhsobj(Ri), rhsobj(Ri), lhsout(Ri), rhsout(Ri), lhsinj (Ri), rhsinj (Ri)

such that, foru, v multisets of objects:

lhsobj(Ri)(a) =
∑

r=u→v∈RΠ
i

Ri(r)·u(a); rhsobj(Ri)(a) =
∑

r=u→v∈RΠ
i

Ri(r)·v(a)

lhs
out(Ri)(a) =

X

r=u→(v,out)∈RΠ
i

Ri(r)·u(a); rhs
out(Ri)(a) =

X

r=u→(v,out)∈RΠ
i

Ri(r)·v(a)

lhs
inj (Ri)(a) =

X

r=u→(v,inj)∈RΠ
i

Ri(r) · u(a); rhs
inj (Ri)(a) =

X

r=u→(v,inj)∈RΠ
i

Ri(r) · v(a)

We have the following properties:

• lhsobj(Ri) = rhsobj(R̃i) andrhsobj(Ri) = lhsobj(R̃i);

• lhsout(Ri) = rhsini (R̃parent(i)) andrhsout(Ri) = lhsini(R̃parent(i));

• if j ∈ children(i) thenlhsinj (Ri) = rhsout(R̃j) andrhsinj (Ri) = lhsout(R̃j);
• lhs(Ri) = lhsobj(Ri) + lhsout(Ri) +

∑
j∈children(i) lhsinj (Ri).

Now we can prove the statements of this Proposition. We proveonly the first one; the

proof of the second one is similar. IfM
R→mpr→msg N then there exists an interme-

diate configurationP such thatM
R→mpr P andP →msg N . ThenRi are maxi-

mally valid in wi(M) andwi(P) = wi(M) − lhs(Ri) + rhs(Ri). Sincewi(M) is
a multiset of objects, it follows thatobj(wi(P)) = wi(M) − lhs(Ri) + rhsobj(Ri).
If j ∈ children(i) we haveinj(wi(P)) = rhsinj (Ri) and moreover,out(wi(P)) =
rhsout(Ri). SinceP →msg N we havewi(N) = obj(wi(P)) + ini(wparent(i)(P)) +∑

j∈children(i) out(wj(P)). Replacingwi(P), wparent(i)(P) andwj(P) we obtain

wi(N) = wi(M)−lhs(Ri)+rhsobj(Ri)+rhsini(Rparent(i))+
∑

j∈children(i)

rhsout(Rj)

which is equivalent to

wi(Ñ) = wi(M)− lhs(Ri) + lhsobj(R̃i) + lhsout(R̃i) +
∑

j∈children(i)

lhsinj(R̃i)

i.e. wi(Ñ) = wi(M) − lhs(Ri) + lhs(R̃i). ThereforeR̃i is valid in wi(Ñ), ∀i ∈
{1, . . . , m}. Suppose that̃R is not reversely valid inÑ . Then we have three possibili-

ties, given by Definition 7. First, if there isi ∈ {1, . . . , m} andr̃ = u→ v ∈ R
eΠ
i such

thatv ≤ wi(Ñ)− lhs(R̃i) it means thatlhs(r) ≤ wi(M)− lhs(Ri), which contradicts
the maximal validity ofRi. Second, if there isi ∈ {1, . . . , m} andr̃ = u→ (v, ini) ∈
R

eΠ
parent(i) such thatv ≤ wi(Ñ) − lhs(R̃i) then againlhs(r) ≤ wi(M) − lhs(Ri)

(contradiction). The third situation leads to the same contradiction. Thus, there exists

56 Dual P Systems

an intermediate configurationQ in Π̃ such thatÑ
eR→gmpr Q. We have to show that

Q→msg M̃ , i.e. to prove

wi(M̃) = obj(wi(Q)) + ini(wparent(i)(Q)) +
∑

j∈children(i)

out(wj(Q))

Sincewi(Q) = wi(Ñ) − lhs(R̃i) + rhs(R̃i) it follows thatobj(wi(Q)) = wi(M) −
lhs(Ri)+rhsobj(R̃i). We also have thatini(wparent(i)(Q)) = rhsini (R̃parent(i)) and

out(wj(Q)) = rhsout(R̃j). So the relation we need to prove is equivalent to

wi(M̃) = wi(M)−lhs(Ri)+rhsobj(R̃i)+rhsini(R̃parent(i))+
∑

j∈children(i)

rhsout(R̃j)

which is true becauselhs(Ri) = lhsobj(Ri)+lhsout(Ri)+
∑

j∈children(i) lhsinj (Ri).
2 2

5 An Alternative Approach

Another way to reverse a computationN
R→mpr→msg M is to move objects instead of

moving rules. We start by reversing all rules of the P systemΠ; since these rules can be
communication rules, by their reversal we do not obtain another P system. For example,
a rulea→ (b, out) yields(b, out)→ a, whose left-hand side contains the messageout
and therefore is not a rule. However, we can consider a notionof extended P system in
which we allow rules to also have messages in their left-handside. We move objects
present in the membranes and transform them from objects to messages according to
the rules of the membrane system. The aim is to achieve a result of form

M
R→mpr N →msg P if and only if P̃ →gmsg Ñ

eR→gmpr M̃

An example illustrating the movement of the objects is the following:

Dual P Systems 57

1

'

&

$

%

a
r1 : a → (c, in2)

r2 : a → c

2

�

�

�

�
a + e

r3 : e → (c, in3)
r4 : a → (d, out)

3

�

�
	b

r5 : b → (e, out)

→mpr →msg 1

'

&

$

%

d
r1 : a → (c, in2)

r2 : a → c

2

�

�

�

�
c + e

r3 : e → (c, in3)
r4 : a → (d, out)

3

�

�
	c

r5 : b → (e, out)

⇑ gmpr+dual ⇓dual

1

'

&

$

%

(c, in2)
er1 : (c, in2) → a

er2 : c → a

2

�

�

�

�
(d, out) + (c, in3)

er3 : (c, in3) → e
er4 : (d, out) → a

3

�

�
	(e, out)

er5 : (e, out) → b

gmsg← 1

'

&

$

%

d
er1 : (c, in2) → a

er2 : c → a

2

�

�

�

�
c + e

er3 : (c, in3) → e
er4 : (d, out) → a

3

�

�
	c

er5 : (e, out) → b

where the “dual” movement→gmsg of objects between membranes is:

• d in membrane1
called by ruler̃4−−−−−−−−→ (d, out) in membrane2;

• c in membrane2
called by ruler̃1−−−−−−−−→ (c, in2) in membrane1;

• e in membrane2
called by ruler̃5−−−−−−−−→ (e, out) in membrane3;

• c in membrane3
called by ruler̃3−−−−−−−−→ (c, in3) in membrane2.

By applying the dual rules, messages are consumed and turnedinto objects, thus per-
forming a reversed computation to the initial membrane.

6 Conclusion

In this paper, we solve the problem of finding all the configurationsN of a P system
which evolve to a given configurationM in a single step by introducing dual P sys-
tems. The case of P systems without communication rules is used as a stepping stone
towards the case of P systems with simple communication rules. In the latter case, two
approaches are presented: one where the rules are reversed and moved between mem-
branes, and the other where the rules are only reversed. On dual membranes we employ
a semantics which is surprisingly close to the one giving themaximally parallel rewrit-
ing (and message sending, if any).

The dual P systems open new research opportunities. A problem directly related to the
subject of this paper is the predecessor existence problem in dynamical systems [1].

58 Dual P Systems

Dual P systems provide a simple answer, namely that a predecessor for a configuration
exists if and only if there exists a system of multisets of rules which is reversely valid.

Dualising a P system is closely related to reversible computation [3]. Reversible com-
puting systems are those in which every configuration is obtained from at most one pre-
vious configuration (predecessor). A paper which concerns itself with reversible com-
putation in energy-based P systems is [2].

Further development will include defining dual P systems forP systems with general
communication rules. Other classes of P systems will also bestudied.

Acknowledgements. We thank the anonymous reviewers for their helpful comments.
This research is partially supported by the grants CNCSIS Idei 402/2007 and CEEX
47/2005.

Bibliography

[1] C. Barretta, H.B. Hunt III, M.V. Marathea, S.S. Ravic, D.J. Rosenkrantz, R.E.
Stearns, M. Thakurd. Predecessor Existence Problems for Finite Discrete Dynam-
ical Systems.Theoretical Computer Sciencevol.386, 337, 2007.

[2] A. Leporati, C. Zandron, G. Mauri. Reversible P Systems to Simulate Fredkin
Circuits.Fundamenta Informaticaevol.74, 529-548, 2006.

[3] K. Morita. Reversible Computing and Cellular Automata –A Survey.Theoretical
Computer Sciencevol.395, 101 - 131, 2008.

[4] Gh. Păun.Membrane Computing. An Introduction. Springer, 2002.

Computing Solutions of #P-complete Problems by
P Systems with Active Membranes

———————————————
Artiom Alhazov1, Liudmila Burtseva1, Svetlana Cojocaru1,
Yurii Rogozhin1,2

1Academy of Sciences of Moldova, Institute of Mathematics and Computer Science
Academiei 5, MD-2028, Chişinău, Moldova
{artiom,burtseva,sveta,rogozhin }@math.md

2Rovira i Virgili University, Research Group on Mathematical Linguistics
Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain

Membrane computing is a formal framework of distributed parallel multiset
processing. Due to massive parallelism and exponential space some intractable
computational problems can be solved by P systems with active membranes in
polynomial number of steps. In this paper we generalize thisapproach from
decisional problems to the computational ones, by providing a solution of a
#P-Complete problem, namely to compute the permanent of a binary matrix.

1 Introduction

Membrane systems are a convenient framework of describing polynomial-time solu-
tions to certain intractable problems in a massively parallel way. Division of membranes
makes it possible to create exponential space in linear time, suitable for attacking prob-
lems inNP and even inPSPACE. Their solutions by so-called P systems with active
membranes have been investigated in a number of papers since2001, later focusing on
solutions by restricted systems.

The description of rules in P systems with active membranes involves membranes and
objects; the typical types of rules are(a) object evolution,(b), (c) object communica-
tion, (d) membrane dissolution,(e), (f) membrane division, see Subsection 2.2. Since
membrane systems are an abstraction of living cells, the membranes are arranged hier-
archically, yielding a tree structure. A membrane is calledelementary if it is a leaf of
this tree, i.e., if it does not contain other membranes.

The first efficientsemi–uniform solutionto SAT was given by Gh. Păun in [4], using
division for non–elementary membranes and three electrical charges. This result was

60 Computing Solutions of #P-complete Problems

improved by Gh. Păun, Y. Suzuki, H. Tanaka, and T. Yokomori in [5] using only division
for elementary membranes.

Different efficientuniform solutionshave been obtained in the framework of recognizer
P systems with active membranes, with polarizations and only using division rules for
elementary membranes ([7], [6], [3], [9], [1], [8], and [11]).

The goal of this paper is to generalize the approach from decisional problems to the
computational ones, by considering a#P-Complete (pronounced sharp-P complete)
problem of computing thepermanentof a binary matrix; see also section 1.3.7 in [13]
for a presentation of Complexity Theory of counting problems.

Let us cite [14] for additional motivation:

While 3SAT and the other problems inNP-Complete are widely assumed to require an effort
at least proportional to2n, wheren is a measure of the size of the input, the problems in#P-
Complete are harder, being widely assumed to require an effort proportional ton2n.

While attackingNP complexity class by P systems with active membranes have been

often motivated byP
?
= NP problem, we recall from [15] the following fact:

If the permanent can be computed in polynomial time by any method, thenFP=#Pwhich is an
even stronger statement thanP= NP.

Here, by “any method” one understands “... on sequential computers” andFP is the set
of polynomial-computable functions.

2 Definitions

Membrane computing is a recent domain of natural computing started by Gh. Păun in
1998. The components of a membrane system are a cell-like membrane structure, in
the regions of which one places multisets of objects which evolve in a synchronous
maximally parallel manner according to given evolution rules associated with the mem-
branes.

2.1 Computing by P systems LetO be a finite set of elements called objects. In this
paper, like it is standard in membrane systems literature, amultiset of objects is denoted
by a string, so the multiplicity of object is represented by number of its occurrences in
the string. The empty multiset is thus denoted by the empty string, λ.

To speak about the result of the computation of a P system we need the definition of a
P system with output.

Definition 1 A P system with output,Π, is a tuple

Computing Solutions of #P-complete Problems 61

Π =
(
O, T, H, E, µ, w1, · · · , wp, R, i0

)
, where:

• O is the working alphabet of the system whose elements are called objects.
• T ⊆ O is the output alphabet.
• H is an alphabet whose elements are called labels.
• E is the set of polarizations.
• µ is a membrane structure (a rooted tree) consisting ofp membranes injectively

labelled by elements ofH .
• wi is a string representing aninitial multiset overO associated with membranei,

1 ≤ i ≤ p.
• R is a finite set of rules defining the behavior of objects fromO and membranes

labelled by elements ofH .
• i0 identifies the output region.

A configuration of a P system is its “snapshot”, i.e., the current membrane structure and
the multisets of objects present in regions of the system. While initial configuration is
C0 = (µ, w1, · · · , wp), each subsequent configurationC′ is obtained from the previous
configurationC by maximally parallel application of rules to objects and membranes,
denoted byC ⇒ C′ (no further rules are applicable together with the rules that trans-
form C into C′). A computation is thus a sequence of configurations starting from C0,
respecting relation⇒ and ending in a halting configuration (i.e., such one that no rules
are applicable).

The P systems of interest here are those for which all computations give the same result.
This is because it is enough to consider one computation to obtain all information about
the result.

Definition 2 A P system with output isconfluentif (a) all computations halt; and (b) at
the end of all computations of the system, regioni0 contains the same multiset of objects
fromT .

In this case one can say that the multiset mentioned in (b) is the result given by a
P system, so this property is already sufficient for convenient usage of P systems for
computation.

However, one can still speak about a stronger property: a P system isstrongly confluent
if not only the result of all computation is the same, but alsothe halting configuration is
the same. A yet stronger property is determinism: a P system is calleddeterministicif it
only has one computation.

In what follows we will represent computational problems bytriples: domain, range
and the function (from that domain into that range) that needs to be computed. The

62 Computing Solutions of #P-complete Problems

notationPMC
∗
R of the class of problems that are polynomially computable bysemi-

uniform families of P systems with active membranes has beenintroduced by M.J.
Pérez Jiménez and his group, see, e.g., [10]. The definition below generalizes it from
decisional problems to the computational ones.

Definition 3 LetX = (IX , F, θX) be a computational problem:θX : IX → F . We say
thatX is solvable in polynomial time by a (countable) familyR of confluent P systems
with outputΠ = (Π(u))u∈IX

, and we denote this byX ∈ PMC
∗
R, if the following are

true.

1 The familyΠ is polynomially uniform by Turing machines, i.e., there exists a deter-
ministic Turing machine working in polynomial time which constructs the system
Π(u) from the instanceu ∈ IX .

2 The familyΠ is polynomially bounded: for some polynomial functionp(n) for
each instanceu ∈ IX of the problem, all computations ofΠ(u) halt in, at most,
p(|u|) steps.

3 There exists a polynomial-time computable functiondec such that the familyΠ
correctly answersX with respect to(X, dec): for each instance of the problem
u ∈ IX , the functiondec applied to the result given byΠ(u) returns exactlyθX(u).

We say that the familyΠ is asemi–uniform solutionof the problemX .

Now we additionally consider input into P systems and we dealwith P systems solv-
ing computational problems in auniform way in the following sense: all instances of
the problem with the samesize(according to a previously fixed polynomial time com-
putable criterion) are processed by the same system, on which an appropriate input,
representing the specific instance, is supplied.

If w is a multiset over the input alphabetΣ ⊆ O, then theinitial configurationof a P
systemΠ with an inputw over alphabetΣ and input regioniΠ is

(µ, w1, · · · , wiΠ−1, wiΠ ∪ w, wiΠ+1 · · · , wp).

In the definition below we present the notationPMCR of the class of problems that
are polynomially computable by uniform families of P systems with active membranes
introduced by M.J. Pérez Jiménez and his group, see, e.g.,[10], generalized from deci-
sional problems to the computational ones.

Definition 4 LetX = (IX , F, θX) be a computational problem. We say thatX is solv-
able in polynomial time by a familyΠ = (Π(n))n∈N of confluent membrane systems
with input, and we denote it byX ∈ PMCR, if

Computing Solutions of #P-complete Problems 63

1 The familyΠ is polynomially uniform by TM: some deterministic TM constructs
in polynomial time the systemΠ(n) fromn ∈ N.

2 There exists a pair(cod, s) of polynomial-time computable functions whose do-
main is IX and a polynomial-time computable functiondec whose range isF ,
such that for eachu ∈ IX , s(u) is a natural number,cod(u) is an input multiset of
the systemΠ(s(u)), verifying the following:

2a The familyΠ is polynomially bounded with respect to(X, cod, s); that is, there
exists a polynomial functionp(n) such that for eachu ∈ IX every computation of
the systemΠ(s(u)) with inputcod(u) halts in at mostp(|u|) steps.

2b There exists a polynomial-time computable functiondec such that the familyΠ
correctly answersX with respect to(X, cod, s, dec): for each instance of the prob-
lemu ∈ IX , the functiondec, being applied to the result given byΠ(s(u)) with
inputcod(u), returns exactlyθX(u).

We say that the familyΠ is auniform solutionto the problemX .

2.2 P systems with active membranesTo speak about P systems with active mem-
branes, we need to specify the rules, i.e., the elements of the setR in the description of
a P system. They can be of the following forms:

(a) [a→ v]
e
h,

for h ∈ H, e ∈ E, a ∈ O, v ∈ O∗

(object evolution rules, associated with membranes and depending on the label and
the polarization of the membranes, but not directly involving the membranes, in the
sense that the membranes are neither taking part in the application of these rules
nor are they modified by them);

(b) a[]e1

h → [b]e2

h ,
for h ∈ H, e1, e2 ∈ E, a, b ∈ O
(communication rules; an object is introduced into the membrane; the object can
be modified during this process, as well as the polarization of the membrane can
be modified, but not its label);

(c) [a]e1

h → []e2

h b,
for h ∈ H, e1, e2 ∈ E, a, b ∈ O
(communication rules; an object is sent out of the membrane;the object can be
modified during this process; also the polarization of the membrane can be modi-
fied, but not its label);

(d) [a]eh → b,
for h ∈ H, e ∈ E, a, b ∈ O
(dissolving rules; in reaction with an object, a membrane can be dissolved, while
the object specified in the rule can be modified);

(e) [a]
e1

h → [b]
e2

h [c]
e3

h ,
for h ∈ H, e1, e2, e3 ∈ E, a, b, c ∈ O

64 Computing Solutions of #P-complete Problems

(division rules for elementary membranes; in reaction withan object, the mem-
brane is divided into two membranes with the same label, possibly of different po-
larizations; the object specified in the rule is replaced in the two new membranes
by possibly new objects).

(f0) [[]h1
[]h2

]h0
→ [[]h1

]h0
[[]h2

]h0
,

for h0, h1, h2 ∈ H
(polarizationless division rules for non–elementary membranes. If the membrane
with labelh0 contains other membranes than those with labelsh1, h2, these mem-
branes and their contents are duplicated and placed in both new copies of the mem-
braneh0; all membranes and objects placed inside membranesh1, h2, as well as
the objects from membraneh0 placed outside membranesh1 andh2, are repro-
duced in the new copies of membraneh0).

In this paper we do not need non–elementary membrane division, dissolution or rules
that bring an object inside a membrane; they are mentioned inthe definition for com-
pleteness.

The rules of type (a) are considered to only involve objects,while all other rules are
assumed to involve objects and membranes mentioned in theirleft-hand side. An appli-
cation of a rule consists in subtracting a multiset described in the left-hand side from
a corresponding region (i.e., associated to a membrane withlabel h and polarization
e for rules of types (a) and (d), or associated to a membrane with labelh and polar-
izatione1 for rules of type (c) and (e), or immediately outer of such a membrane for
rules of type (b)), adding a multiset described in the right-hand side of the rule to the
corresponding region (that can be the same as the region fromwhere the left-hand side
multiset was subtracted, immediately inner or immediatelyouter, depending on the rule
type), and updating the membrane structure accordingly if needed (changing membrane
polarization, dividing or dissolving a membrane).

The rules can only be applied simultaneously if they involvedifferent objects and mem-
branes (we repeat that rules of type (a) are not considered toinvolve a membrane), and
such parallelism is maximal if no further rules are applicable to objects and membranes
that were not involved.

2.3 Permanent of a matrix The complexity class#P, see [16], was first defined
in [12] in a paper on the computation of the permanent.

Definition 5 Let Sn be the set of permutations of integers from1 to n, i.e., the set of
bijective functionsσ : {1, · · · , n} → {1, · · · , n}. The permanent of a matrixA =
(ai,j)1≤i,j≤n is defined as

perm(A) =
∑

σ∈Sn

n∏

i=1

ai,σ(i).

Computing Solutions of #P-complete Problems 65

Informally, consider a combination ofn matrix elements containing one element from
every row and one element from every column. The permanent isthe sum over all such
combinations of the product of the combination’s elements.

A matrix is binary if its elements are either 0 or 1. In this case, the permanent is the
number of combinations ofn matrix elements with value 1, containing one element
from each row and one element from each column. For example,

perm




1 0 1
0 1 0
1 0 1


 = 2.

Unlike the determinant of a matrix, the permanent cannot be computed by Gauss elimi-
nation.

3 Results

Theorem 1 The problem of computing a permanent of a binary matrix is solvable in
polynomial time by a uniform family of deterministic P systems with active membranes
with two polarizations and rules of types(a), (c), (e).

Proof Let A = (ai,j) be ann× n matrix. We defineN = ⌈log2(n)⌉, andn′ = 2N <
2n is the least power of two not smaller thenn. The input alphabet isΣ(n) = {〈i, j〉 |
1 ≤ i ≤ n, 1 ≤ j ≤ n}, and the matrixA is given as a multisetw(A) containing
for every elementai,j = 1 of the matrix one symbol〈i, j〉. Let the output alphabet be
T = {o}, we will present a P systemΠ(n) giving operm(A) as the result when given
inputw(A) in regioniΠ(n) = 2.

Π(n) =
(
O, T, H, E, µ, w1, w2, R, 1

)
,

O = Σ(n) ∪ T ∪ {c} ∪ {di, ai | 0 ≤ i ≤ Nn} ∪ {Di | 0 ≤ i ≤ n + 1}
∪ {〈i, j, k, l〉 | 0 ≤ i ≤ Nn− 1, 0 ≤ j ≤ n− 1, 0 ≤ k ≤ Nn− 1,

0 ≤ l ≤ n′ − 1},
µ = [[]

0
2]

0
1, H = {1, 2}, E = {0, 1},

w1 = λ, w2 = d0.

and the rules are presented and explained below.

A1 [〈i, j〉 → 〈Ni − 1, j − 1, Nn− 1, 0〉]02, 1 ≤ i ≤ n, 1 ≤ j ≤ n

Preparation of the input objects: tuple representation. Informal meaning of the tuple
components is 1) number of steps remaining until rowi is processed, 2) column number,

66 Computing Solutions of #P-complete Problems

starting from 0, 3) number of steps remaining until all rows are processed, 4) will be
used for memorizing the chosen column.

A2 [di]e2 → [di+1]02[di+1]12, 0 ≤ i ≤ Nn− 1, e ∈ E

Division of the elementary membrane forNn times.

A3 [〈i, j, k, l〉 → 〈i− 1, j, k − 1, 2l + e〉]e2,
0 ≤ i ≤ Nn− 1, i is not divisible byN ,
0 ≤ j ≤ n− 1, 1 ≤ k ≤ Nn− 1, 0 ≤ l ≤ (n− 1− e)/2, e ∈ E

For i times, duringN − 1 steps input objects corresponding to rowi memorize the
polarization history. The binary representation of the chosen column for the current row
corresponds to the history of membrane polarizations during N steps.

A4 [〈i, j, k, l〉 → λ]
e
2,

0 ≤ i ≤ Nn− 1, 0 ≤ j ≤ n− 1, 1 ≤ k ≤ Nn− 1,
(n− 1− e)/2 ≤ l ≤ n′/2− 1, e ∈ E

Erase all input objects if the chosen column is invalid, i.e., its number exceedsn− 1.

A5 [〈i, j, k, l〉 → 〈i− 1, j, k − 1, 0〉]e
2,

1 ≤ i ≤ Nn− 1, 0 ≤ j ≤ n− 1, j 6= 2l + e,
0 ≤ k ≤ Nn− 1, 0 ≤ l ≤ (n− 1− e)/2, e ∈ E

If element’s row is not reached and element’s column is not chosen, proceed to the next
row.

A6 [〈i, j, k, l〉 → λ]
e
2,

1 ≤ i ≤ Nn− 1, 0 ≤ j ≤ n− 1, j = 2l + e,
0 ≤ k ≤ Nn− 1, 0 ≤ l ≤ (n− 1− e)/2, e ∈ E

Erase the chosen column, except the chosen element.

A7 [〈0, j, k, l〉 → λ]
e
2,

0 ≤ j ≤ n− 1, j 6= 2l + e,
0 ≤ k ≤ Nn− 1, 0 ≤ l ≤ (n− 1− e)/2, e ∈ E

Erase the chosen row, except the chosen element.

Computing Solutions of #P-complete Problems 67

A8 [〈0, j, k, l〉 → ak−1]
e
2,

0 ≤ j ≤ n− 1, j = 2l + e,
0 ≤ k ≤ Nn− 1, 0 ≤ l ≤ (n− 1− e)/2, e ∈ E

If chosen element is present (i.e., it has value 1 and its column has not been chosen
before), produce objectak−1.

A9 [ak → ak−1]e2, 1 ≤ k ≤ Nn− 1, e ∈ E

Objectsak wait until all rows are processed. Then a membrane represents a solution if
n copies ofa0 are present.

B1 [dNn → D1−ec
n+e]

e
2, e ∈ E

If polarization is 0, producen copies of objectc and a counterD1. Otherwise, produce
one extra copy ofc and set the counter toD0; this will reduce to the previous case in
one extra step.

B2 [c]
1
2 → []

0
2c

B3 [a0]02 → []12a0

B4 [Di → Di+1]
1
2, 0 ≤ i ≤ n

Each objecta0 changes polarization to 1, the counterDi counts this, and then objectc
resets the polarization to 0.

B5 [Dn+1]12 → []02o

If there aren chosen elements with value 1, send one objecto out.

The system is deterministic. Indeed, for any polarization and any object (other thandi,
i < Nn, c, a0 or Dn+1), there exist at most one rule of type (a) and no other associated
rules. As for the objects in parentheses above, they have no rules of type (a) associated
with them and they cause a well-observed deterministic behavior of the system: division
rules are applied during the firstNn steps; then, depending on the polarization, symbols
a0 or c are sent out; finally, whereverDn+1 is produced, it is sent out.

The system computes the permanent of a matrix in at mostn(2 + N)+ 1 = O(n log n)
steps. Indeed, firstNn steps correspond to membrane divisions corresponding to find-
ing all permutations ofSn, see Definition 5, while the following steps correspond to

68 Computing Solutions of #P-complete Problems

counting the number of non-zero entries of the matrix associated to these permutations
(there are at most2n + 1 of them since the system counts to at mostn and each count
takes two steps; one extra step may be needed for a techinicalreasons: to reset to0 the
polarization of membranes that had polarization1 after the firstNn steps). 2

It should be noted that requirement that the output region isthe environment (typically
done for decisional problem solutions) has been dropped. This makes it possible to
give non-polynomial answers to the permanent problem (which is a number between0
andn!) in polynomial number of steps without having to recall from[2] rules sending
objects out that work in parallel.

4 Discussion

In this paper we presented a solution to the problem of computing a permanent of a
binary matrix by P systems with active membranes, namely with two polarizations and
rules of object evolution, sending objects out and membranedivision. This problem
is known to be#P-Complete. The solution has been preceded by the framework that
generalizes decisional problems to computing functions: now the answer is much more
than one bit. This result suggests that P systems with activemembranes without non–
elementary membrane division still compute more than decisions of the problems in
NP.

Acknowledgments. All authors gratefully acknowledge the support by the Science
and Technology Center in Ukraine, project 4032. Yurii Rogozhin gratefully acknowl-
edges the support of the European Commission, project MolCIP, MIF1-CT-2006-021666.

Bibliography

[1] A. Alhazov, C. Martı́n–Vide, L. Pan, Solving Graph Problems by P Systems with
Restricted Elementary Active Membranes.Aspects of Molecular Computing(N.
Jonoska, Gh. Păun, G. Rozenberg, Eds.), Lecture Notes in Computer Science
2950, 2004, 1–22.

[2] A. Alhazov, L. Pan, Gh. Păun, Trading Polarizations forLabels in P Systems with
Active Membranes,Acta Informaticae41, 2-3, 2004, 111-144.

[3] M. A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, A Fast P System
for Finding a Balanced 2-partition,Soft Computing9, 9, 2005, 673–678.

[4] Gh. Păun, P Systems with Active Membranes: AttackingNP–complete Problems,
Journal of Automata, Languages and Combinatorics, 6, 1, 2001, 75–90.

[5] Gh. Păun, Y. Suzuki, H. Tanaka, T. Yokomori, On the Powerof Membrane Divi-
sion in P Systems,Theoretical Computer Science324, 1, 2004, 61–85.

[6] M.J. Pérez-Jiménez, A. Riscos-Núñez, Solving the Subset-Sum Problem by Active
Membranes,New Generation Computing23, 4, 2005, 367–384.

Computing Solutions of #P-complete Problems 69

[7] Pérez-Jiménez, M.J., Riscos-Núñez, A., A Linear–time Solution to the Knapsack
Problem Using P Systems with Active Membranes,Membrane Computing, In-
ternational Workshop, WMC 2003(C. Martı́n-Vide, Gh. Păun, G. Rozenberg, A.
Salomaa, Eds.), Lecture Notes in Computer Science2933(2004), 250–268.

[8] M.J. Pérez-Jiménez, F.J., Romero-Campero, Solving the Bin Packing Problem
by Recognizer P Systems with Active Membranes,Proceedings of the Second
Brainstorming Week on Membrane Computing(Gh. Păun, A. Riscos-Núñez, A.
Romero-Jiménez, F. Sancho-Caparrini, Eds.), (RGNC Report 01/04, University of
Seville, 2004, 414–430.

[9] M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Complexity Classes
in Cellular Computing with Membranes,Natural Computing2, 3, 2003, 265-285.

[10] M.J. Pérez-Jimé’nez, A. Romero-Jiménez, F. Sancho-Caparrini, Solving VALID-
ITY Problem by Active Membranes with Input,Brainstorming Week on Mem-
brane Computing, Tarragona, 2003 (M. Cavaliere, C. Martı́n-Vide, Gh. Păun, Eds.),
Technical Report 26, Rovira i Virgili University, Tarragona, 2003, 279–290.

[11] M.J. Pérez-Jiménez, F.J. Romero–Campero, Attacking the Common Algorithmic
Problem by Recognizer P Systems.Machines, Computations and Universality, (M.
Margenstern, Ed.) Lecture Notes in Computer Science3354, 2005, 304-315.

[12] L. G. Valiant, The Complexity of Computing the Permanent, Theoretical Com-
puter Science8, Elsevier, 1979, 189–201.

[13] I. Wegener,Complexity Theory: Exploring the Limits of Efficient Algorithms,
Springer-Verlag, 2005.

[14] R. M. Williams, D. H. Wood, Exascale Computer Algebra Problems Interconnect
with Molecular Reactions and Complexity Theory,DIMACS Series in Discrete
Mathematics and Theoretical Computer Science44, 1999, 267–275.

[15] http://en.wikipedia.org/wiki/Permanent (updated 05.05.2008)
[16] http://en.wikipedia.org/wiki/Sharp-P (updated 13.12.2007)

Fast synchronization in P systems

———————————————
Artiom Alhazov1, Maurice Margenstern2, Sergey Verlan1,3

1Academy of Sciences of Moldova, Institute of Mathematics and Computer Science,
str. Academiei 5, MD-2028, Chişinău, Moldova
alhazov@math.md

2Université Paul Verlaine - Metz, LITA, EA 3097, IUT de Metz
Ile du Saulcy, 57045 Metz Cédex, France
margens@univ-metz.fr

3Université Paris 12, LACL, Département Informatique,
61 av. Général de Gaulle, 94010 Créteil, France
verlan@univ-paris12.fr

We consider the problem of synchronizing the activity of allmembranes of a
P system. After pointing at the connection with a similar problem dealt with
in the field of cellular automata where the problem is called the firing squad
synchronization problem, FSSP for short, we provide two algorithms to solve
this problem. One algorithm is non-deterministic and worksin 2h+3, the other
is deterministic and works in3h+3, whereh is the height of the tree describing
the membrane structure.

1 Introduction

The synchronization problem can be formulated in general terms with a wide scope of
application. We consider a system constituted of explicitly identified elements and we
require that starting from an initial configuration where one element is distinguished,
after a finite time, all the elements which constitute the system reach a common feature,
which we callstate, all at the same time and the state was never reached before byany
element.

This problem is well known for cellular automata, where it was intensively studied
under the name of thefiring squad synchronization problem(FSSP): a line of soldiers
have to fire at the same time after the appropriate order of a general which stands at
one end of the line, see [2, 5, 4, 9–11]. The first solution of the problem was found by
Goto, see [2]. It works on any cellular automaton on the line with n cells in the minimal
time, 2n−2 steps, and requiring several thousands of states. A bit later, Minsky found
his famous solution which works in3n, see [5] with a much smaller number of states,
13 states. Then, a race to find a cellular automaton with the smallest number of states

72 Fast synchronization in P systems

which synchronizes in3n started. See the above papers for references and for the best
results and for generalizations to the planar case, see [9] for results and references.

The synchronization problem appears in many different contexts, in particular in biol-
ogy. As P systems model the work of a living cell constituted of many micro-organisms,
represented by its membranes, it is a natural question to raise the same issue in this
context. Take as an example the meiosis phenomenon, it probably starts with a synchro-
nizing process which initiates the division process. Many studies have been dedicated
to general synchronization principles occurring during the cell cycle; although some
results are still controversial, it is widely recognised that these aspects might lead to
an understanding of general biological principles used to study the normal cell cycle,
see [8].

We may translate FSSP in P systems terms as follows. Startingfrom the initial configu-
ration where all membranes, except the root, contain same objects the system must reach
a configuration where all membranes contain a distinguishedsymbol,F . Moreover, this
symbol must appear in all membranes only during at the synchronization time.

The synchronization problem as defined above was studied in [1] for two classes of
P systems: transitional P systems and P systems with priorities and polarizations. In
the first case, a non-deterministic solution to FSSP was presented and for the second
case a deterministic solution was found. These solutions need a time3h and4n + 2h
respectively, wheren is the number of membranes of a P system andh is the depth of
the membrane tree.

In this article we significantly improve the previous results in the non-deterministic case.
In the deterministic case, another type of P system was considered and this permitted to
improve the parameters. The new algorithms synchronize thecorresponding P systems
in 2h + 3 and3h + 3 respectively.

2 Definitions

In the following we briefly recall the basic notions concerning P systems. For more
details we refer the reader to [6] and [12].

A transitional P system of degreen is a construct

Π = (O, µ, w1, . . . , wn, R1, . . . , Rn, i0),

where:

1. O is a finite alphabet of symbols called objects,
2. µ is a membrane structure consisting ofn membranes labelled in a one-to-one

manner by1, 2, . . . , n (the outermost membrane is called theskinmembrane),

Fast synchronization in P systems 73

3. wi ∈ O∗, for each1 ≤ i ≤ n is a multiset of objects associated with the regioni
(delimited by membranei),

4. for each1 ≤ i ≤ n, Ri is a finite set of rules associated with the regioni which
have the following formu → v1, tar1; v2, tar2; . . . ; vm, tarm, whereu ∈ O+,
vi ∈ O andtari ∈ {in, out, here, in!},

5. i0 is the label of an elementary membrane ofµ that identifies the output region.

A transitional P system is defined as a computational device consisting of a set ofn hi-
erarchically nested membranes that identifyn distinct regions (the membrane structure
µ) where, to each regioni, a multiset of objectswi and a finite set of evolution rulesRi,
1 ≤ i ≤ n are assigned.

An evolution ruleu → v1, tar1; v2, tar2; . . . ; vm, tarm rewritesu by v1, . . . , vm and
moves eachvj accordingly to the targettarj . If the tarj target ishere, thenvj remains
in membranei. Targethere can be omitted in the notation. If the targettarj is out, then
vj is sent to the parent membrane ofi. If the targettarj is in, thenvj is sent to any inner
membrane ofi chosen non-deterministically. If the targettarj is equal toin!, thenvj is
sent to all inner membranes ofi (a necessary number of copies is made).

A computation of the system is obtained by applying the rulesin a non-deterministic
maximally parallel manner. Initially, each regioni contains the corresponding finite
multisetwi.

A computation is successful if starting from the initial configuration it reaches a con-
figuration where no rule can be applied. The result of a successful computation is the
natural number obtained by counting the objects that are presented in regioni0. Given a
P systemΠ, the set of natural numbers computed in this way byΠ is denoted byN(Π).
In the sequel we shall omiti0 since it is irrelevant for FSSP.

A transitional P system with promoters and inhibitorsis a construct

Π = (O, µ, w1, . . . , wn, R1, . . . , Rn, i0),

defined as in the previous definition, where the set of rules may contain rules of the form

u→ v1, tar1; v2, tar2; . . . ; vm, tarm |P,¬Q,

whereP ∈ O is the promoter, Q ∈ O is the inhibitor, tari ∈ {in, out, here, in!},
u ∈ O+ andvi ∈ O. If P and/orQ are absent, we shall omit them. The meaning of
promoter and inhibitor (if present in a rule) is following: the rule is not applicable unless
the promoter object exists in the current membrane, while the rule is applicable unless
the inhibitor object is present in the current membrane.

As above, the targethere, which can be omitted in the notation, means that the object
remains in the current membrane and thein! target sends the corresponding object to
all inner membranes at the same time, making the right numberof copies.

74 Fast synchronization in P systems

Each rule may be applied if and only if the corresponding membrane does contain the
objectP and does not contain the objectQ. A computational step is obtained by apply-
ing the rules in a non-deterministic maximally parallel manner.

In the sequel, we will use transitional P systems without a distinguished compartment
as an output,i0, as this is not relevant for FSSP.

We translate the FSSP to P systems as follows:

Problem 1 For a class of P systemsC find two multisetsW ,W ′ ∈ O∗, and two sets of
rulesR,R′ such that for any P systemΠ ∈ C of degreen ≥ 2 having

w1 = W ′, R1 = R′, wi = W andRi = R for all i in {2..n}, assuming that the skin membrane
has the number 1

it holds

• If the skin membrane is not taken into account, then the initial configuration of the
system is stable (cannot evolve by itself).

• If the system halts, then all membranes contain the designated symbolF which
appears only at the last step of the computation.

3 Non-deterministic case

In this section we discuss a non-deterministic solution to the FSSP using transitional P
systems. The main idea of such a synchronization is based on the fact that if a signal is
sent from the root to a leaf then it will take at most2h steps to reach a leaf and return
back to the root. In the meanwhile, the root may guess the value of h and propagate it
step by step down the tree. This takes also2h steps:h to guess the root, andh to end the
propagation and synchronize. Hence, if the signal sent to the leaf, having depthd ≤ h,
returns at the same moment that the root ended the propagation, then the root guessed
the valued. Now, in order to finish the construction it is sufficient to cut off cases when
d < h.

In order to implement the above algorithm in transitional P systems we use following
steps.

• Mark leaves and nodes (nodes byS̄ and leaves byS).
• From the root, send a copy of symbola down. Any inner node must take onea in

order to pass to stateS′. If some node is not passed to stateS′ then when the signal
c will come inside, it will be transformed to#.
• Then end of the guess is marked by signalc. SymbolsS in leaves are transformed

to S′′′ and those in inner nodes toS′′.

Fast synchronization in P systems 75

• In the meanwhile the height is computed with the help ofC3. If a smaller height
d ≤ h is obtained at the root node, then either the symbolC3 will arrive to the root
node and it will contain some symbolsb – then the symbol# will be introduced at
the root node, or the guessed value will bed and then there will be an inner node
with S̄ or a leaf withS (because we have at mostd lettersa) which leads to the
introduction of# in corresponding node.

Now let us present the system in details.

Let Π = (O, µ, w1, . . . , wn, R1, . . . , Rn) the P system to be synchronized, wherei0 is
not mentioned as it is not relevant for the synchronization.To solve the synchronization
problem, we make the following assumptions on the objects, the membranes and the
rules. We consider thatµ is an arbitrary membrane structure and

O = {S, S̄, S1, S2, S3, C1, C2, C3, S
′, S′′, S′′′, a, b, c, F,#}.

We also assume thatw1 = {S1}, wherew1 is the contents of the skin membrane and
that all other membranes are empty. The sets of rules,R1, . . ., Rn are all equal and they
are described below.

Start:
S1 → S2; C2; S, in!; C1, in (1)

Propagation ofS:
S → S̄; S, in! (2)

Root counter (guess):

S2 → S2; b; a, in! S2 → S3; c, in! (3)

Propagatea:
S̄a→ S′ a→ b; a, in! (4)

Propagatec:
cS′ → S′′; c, in! cSa→ S′′′ (5)

Decrement:
S′′b→ S′′ S′′′a→ S′′′ (6)

S′′ → F S′′′ → F (7)

S3b→ S3 (8)

76 Fast synchronization in P systems

Height computing:
C1 → C1, in C2 → C2, in (9)

C1C2 → C3 C2 → # (10)

C3 → C3, out (11)

Root firing:
C3S3 → F (12)

Traps:
cS̄ → # cS → # C3 → # (13)

aF → # bF → # #→ # (14)

We affirm that the systemΠ has the desired behavior. Indeed, let us consider the func-
tioning of this system.

Rule (1) produces objectsS, C1, C2 andS2. ObjectS will propagate down the tree
structure by rule (2), leavinḡS in all intermediate nodes andS in the leaves. Objects
C1 andC2 will be used to count the time corresponding to twice the depth d of some
elementary membrane by rules (9)-(11) (trying to guess the maximal depth). Finally,
objectS2 will produce objectsb in some multiplicity by rules (3).

Together with objectsb, objectsa are produced by the first rule from (3), and they
propagate down the tree structure by (4), one copy being subtracted at each level.

After the root finishes guessing the depth (second rule of (3)), objectc propagates down
the tree structure by (5), producing objectsS′′ at intermediate nodes and objectsS′′′ at
leaves; recall that the root has objectS3. These three objects perform the countdown
(and then the corresponding nodes fire) by rules (6). As for the root, at firing by (12) it
also checks that the timing matches twice the depth of the node visited byC1 andC2.
The rules (13)-(14) handle possible cases of behavior of thesystem, not leading to the
synchronization.

Now we shall present a more formal proof of the assertion above. We have the following
claims.

• We claim that the symbolC3 will appear at the root node at the time2d+2, d ≤ h,
whereh is the height of the membrane structure andd is the depth of the leaf
visited byC1. Indeed, by rules (9) symbolsC1 andC2, initially created by rule (1),
go down until they reach a leaf. If they do not reach the same leaf, then the symbol
is introduced byC2. The symbolC2 reaches the leaf (of depthd) afterd + 1
steps. After thatC1 andC2 are transformed to the symbolC3 (1 step) which starts
travelling up until it reaches the root node (d steps).

Fast synchronization in P systems 77

• We claim that all nodes inner nodes will be marked byS̄ and the leaves will be
marked byS. Indeed, rule (2) permits to implement this behavior.

• Let d + 2, 0 ≤ d ≤ h be the moment when the root stops the guess of the tree
height (the second rule from (3) has been applied). At this moment the contents of
w1 is S3b

d andc starts to be propagated. Now consider any nodex except the root.
We claim that:
If x is of depthi then symbolc will reachx at timed + i + 1 and the number of
lettersa (respectively lettersb) present atx if it is a leaf (respectively inner node)
is ad⊖i (respectivelybd⊖(i+1)), where⊖ denotes the positive substraction.
The proof of this assertion may be done by induction. Initially, at stepd+2, symbol
c is present in all nodes of depth1. Let x be such a node. Ifx is a leaf, then it
receivedd copies ofa. Otherwise, ifx is an inner node, it must containd ⊖ 1
lettersb (d lettersa reached this node and all of them except one were transformed
to b). The induction step is trivial since the letterc propagates each step down the
tree and because the number of lettersa reaching a depthi is smaller by one than
the number ofa reaching the depthi− 1.

• From the above assertion it is clear that all nodes at time2d + 2 will reach the
configuration where there are no more lettersb anda. Hence, all nodes, including
the root node, up to depthd will synchronize at time2d + 3.

Now, in order to finish the proof it is sufficient to observe that if d 6= h then either there
will be a symbolS̄ in an inner node or the deepest leaf (having the depthh) will not
contain objecta (because onlyd lettersa will be propagated down). Hence, whenc will
arrive at this node, it will be transformed to#.

Example 1. We present now an example and discuss the functioning of the system on
it. Consider a systemΠ having 7 membranes with the following membrane structure:

1

2 3

4 5 6

7

�
�

@
@

�
�

@
@

Now consider the evolution of the systemΠ constructed as above. We represent it in a
table format where each cell indicates the contents of the corresponding membrane at
the given time moment. Since the evolution is non-deterministic, we consider firstly the
correct evolution and after that we shall discuss unsuccessful cases.

78 Fast synchronization in P systems

Step w1 w2 w3 w4 w5 w6 w7

0 S1

1 S2C2 S SC1

2 S2b Sa S̄aC2 S S SC1

3 S2bb Saa S′a S S S̄C2 SC1

4 S2bbb Saaa S′ba Sa Sa S̄a SC1C2

5 S3bbb Saaac S′bbc Saa Saa S′a SC3

6 S3bb S′′′aa S′′bb Saac Saac S′bcC3 Sa

7 S3b S′′′a S′′bC3 S′′′a S′′′a S′′b Sac

8 S3C3 S′′′ S′′ S′′′ S′′′ S′′ S′′′

9 F F F F F F F

The system will fail in the following cases:

1. SignalsC1 andC2 go to different membranes.

2. Some symbol̄S is not transformed toS′ (or the deepest leaf does not contain a
lettera).

3. S3 appears in the root membrane afterC3 appears in a leaf.

4. The branch chosen byC3 is not the longest (it has the depthd, d < h).

A possible evolution for the first unsuccessful case is represented in the table below:

Step w1 w2 w3 w4 w5 w6 w7

0 S1

1 S2C2 S SC1

2 S2b SaC2 S̄a S S SC1

3 S2bb Saa# S′a S S S̄ SC1

A possible evolution for the second unsuccessful case is represented in the table below:

Fast synchronization in P systems 79

Step w1 w2 w3 w4 w5 w6 w7

0 S1

1 S2C2 S SC1

2 S2b Sa S̄aC2 S S SC1

3 S2bb Saa S̄ba Sa Sa S̄aC2 SC1

4 S2bbb Saaa S̄bba Saa Saa S′a SC1C2

5 S3bbb Saaac S̄bbbc Saaa Saaa S′ab aSC3

6 S3bb S′′′aa #bbb Saaac Saaac S′bbcC3 Saa

A possible evolution for the third unsuccessful case is represented in the table below:

Step w1 w2 w3 w4 w5 w6 w7

0 S1

1 S2C2 S SC1

2 S2b Sa S̄aC2 S S SC1

3 S2bb Saa S′a S S S̄C2 SC1

4 S2bbb Saaa S′ba Sa Sa S̄a SC1C2

5 S2bbbb Saaaa S′bba Saa Saa S′a aSC3

6 S3bbbb Saaaac S′bbbc Saaa Saaa S′baC3 Sa

7 S3bbb S′′′aaa S′′bbbC3 Saaac Saaac S′bbc Saa

8 S3bbC3 S′′′aa S′′bb S′′′aa S′′′aa S′′bb Saac

9 S3b# S′′′a S′′b S′′a S′′′a S′′b S′′′a

A possible evolution for the fourth unsuccessful case is represented in the table below:

Step w1 w2 w3 w4 w5 w6 w7

0 S1

1 S2C2 S SC1

2 S2b Sa S̄aC2 S SC1 S

3 S2bb Saa S′a S SC1C2 S̄ S

4 S2bbb Saaa S′ba Sa SaC3 S̄a S

5 S3bbb Saaac S′bbcC3 Saa Saa S′a S

6 S3bbC3 S′′′aa S′′bb Saac Saac S′bc Sa

7 S3b# S′′′a S′′bC3 S′′′a S′′′a S′′b Sac

80 Fast synchronization in P systems

4 Deterministic case

Consider now the deterministic case. We take the class of P systems with promoters and
inhibitors and solve Problem 1 for this class.

The idea of the algorithm is very simple. A symbolC2 is propagated down to the leaves
and at each step, being at a inner node, it sends back a signalC. At the root a counter
starts to compute the height of the tree and it stop if and onlyif there are no more signals
C. It is easy to compute that the last signalC will arrive at time2h−1 (there areh inner
nodes, and the last signal will continue forh− 1 steps). At the same time the height is
propagated down the tree as in the non-deterministic case.

Below is the formal description of the system.

The P systemΠ = (O, µ, w1, · · · , wn, R1, · · · , Rn) for deterministic synchroniza-
tion is present below. We consider thatµ is an arbitrary membrane structure. The set
of objects isO = {S1, S2, S3, S4, S, S̄, S′, S′′, S′′′, C1, C2, C, a, a′, b, F}, the initial
contents of the skin isw1 = {S1}, the other membranes are empty. The set of rules
R1, . . . , Rn are identical, they are presented below.

Start:
S1 → S2; C

′
2; S, in!; C1, in! (15)

Propagation ofS:
S → S̄; S, in! (16)

Propagation ofC (height computing signal):

C1 → C1, in! C2 → C; C2, in!; C, out (17)

C1C2 → ε C′
2 → C; C2, in! (18)

C → C, out (19)

Root counter:
S2 → S3 S3 → S′

3; b; a, in! |C (20)

C → ε |S3 S′
3 → S3 |C (21)

C → ε |S′
3

S′
3 → S4; a

′, in! |¬C (22)

Propagation ofa:
S̄a→ S′ a→ b; a, in! |S′ (23)

End propagate ofa:

a′S′ → S′′; a′, in! a′Sa→ S′′′ (24)

Fast synchronization in P systems 81

Decrement:
S′′b→ S′′ S′′′a→ S′′′ (25)

S′′ → F |¬b S′′′ → F |¬a (26)

Root decrement:
S4b→ S4 S4 → F |¬b (27)

We now give a structural explanation of the system. Rule (15)produces four objects.
Similar to the system from the previous section, the propagation of objectS by (16)
leads to marking the intermediate nodes byS̄ and the leaves byS. While objectsC1,
C2 propagate down the tree structure and send a continuous stream of objectsC up to
the root by (17)-(19), objectS2 counts, producing by rules (20)-(22) an objectb every
other step.

When the counting stops, there will be exactlyh copies of objectb in the root. Similar
to the construction from the previous section, objectsa are produced together with ob-
jectsb by the second rule from (20). Objectsa are propagated down the structure and
decremented by one at every level by (23).

After the counting stops in the root (the last rule from (22)), objecta′ is produced. It
propagates down the tree structure by (24), leading to the appearance of objectsS′′ in
the intermediate nodes andS′′′ in the leaves. These two objects perform the countdown
and the corresponding nodes fire by (25). The root behaves in asimilar way by (27).

The correctness of the construction can be argued as follows. It takesh + 1 steps for
a symbolC2 to reach all leaves. All this time, symbolsC are sent up the tree. It takes
furtherh − 1 steps for all symbolsC to reach the root node, and one more step until
symbolsC disappear. Therefore, symbolsb appear in the root node every odd step from
step3 until step2h + 1, soh copies will be made. Together with the production ofbh

in the root node, this number propagates down the tree, beingdecremented by one at
each level. For the depthi, the numberh− i is represented, during propagation, by the
multiplicity of symbolsa (one additional copy ofa is made) in the leaves and by the
multiplicity of symbolsb in non-leaf nodes. After2h + 2 steps, the root node starts the
propagation of the countdown (i.e., decrement of symbolsa or b). For a node of depthi,
it takesi steps for the countdown signal (a′) to reach it, anotherh− i steps to eliminate
symbolsa or b, so every node fires after2h + 2 + i + (h− i) + 1 = 3h + 3 steps after
the synchronization has started.

Example 2. Consider a P system having same membrane structure as the system from
Example 1. We present below the evolution of the system in this case.

82 Fast synchronization in P systems

Step w1 w2 w3 w4 w5 w6 w7

0 S1

1 S2C
′
2 SC1 SC1

2 S3C SC1C2 S̄C2 SC1 SC1 SC1

3 S′
3bC Sa S̄aC SC1C2 SC1C2 S̄C2 SC1

4 S3bC Sa S′C S S S̄C SC1C2

5 S′
3bbC Saa S′aC S S S̄ S

6 S3bbC Saa S′b Sa Sa S̄a S

7 S′
3bbb Saaa S′ba Sa Sa S′ S

8 S4bbb a′Saaa a′S′bb Saa Saa S′a S

9 S4bb S′′′aa S′′bb a′Saa a′Saa a′S′b Sa

10 S4b S′′′a S′′b S′′′a S′′′a S′b a′Sa

11 S4 S′′′ S′′ S′′′ S′′′ S′ S′′′

12 F F F F F F F

5 Conclusions

In this article we presented two algorithms that synchronize two given classes of P
systems. The first one is non-deterministic and it synchronizes the class of transitional
P systems (with cooperative rules) in time2h+3, whereh is the depth of the membrane
tree. The second algorithm is deterministic and it synchronizes the class of P systems
with promoters and inhibitors in time3h + 3.

It is worth to note that the first algorithm has the following interesting property. After
2h steps either the system synchronizes and the objectF is introduced, or an object#
will be present in some membrane. This property can be used during an implementation
in order to cut off failure cases.

The results obtained in this article rely on a rather strong target indication,in!, which
sends an object to all inner membranes. It would be interesting to investigate what hap-
pens if such target is not permitted. However, we conjecturethat a synchronization
would be impossible in this case.

The study of the synchronization algorithms for different classes of P systems is impor-
tant as it permits to implement different synchronization strategies which are important
for such a parallel device as P systems. In particular, with such approach it is possible to
simulate P systems with multiple global clocks by P systems with one global clock. It is
particulary interesting to investigate the synchronization problem for P systems which
cannot create new objects, for example for P systems with symport/antiport.

Fast synchronization in P systems 83

Acknowledgments. The first and the third authors acknowledge the support of the
Science and Technology Center in Ukraine, project 4032.

Bibliography

[1] F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan, How to synchronize the
activity of all components of a P system? In Gy. Vaszil (ed),Proceedings of the
International Workshop Automata for Cellular and Molecular Computing, MTA
SZTAKI, Budapest, Hungary, 2007, 11-22.

[2] E. Goto, A minimum time solution of the firing squad problem, Course notes for
applied mathematics, 298, (1962), Harvard University.

[3] J.B. Kruskal, On the shortest spanning subtree of a graphand the traveling sales-
man problem,Proceedings of the American Mathematical Society, 7, (1956), 48-
50.

[4] J. Mazoyer, A six-state minimal time solution to the firing squad synchronization
problem,Theoretical Science, 50, (1987), 183-238.

[5] M. Minsky, Computation: finite and infinite machines, Prentice-Hall, 1967.
[6] Gh. Păun:Membrane computing. An introduction. Springer-Verlag, 2002.
[7] R.C. Prim, Shortest connection networks and some generalizations,Bell System

Technical Journal, 36, (1957), 1389-1401.
[8] PT. Spellman, G. Sherlock, Reply whole-cell synchronization - effective tools for

cell cycle studies,Trends in Biotechnology, 22(6), (2004), 270-273.
[9] H. Umeo, M. Maeda, N. Fujiwara, An efficient mapping scheme for embed-

ding any one-dimensional firing squad synchronization algorithm onto two-
dimensional arrays,ACRI 2002, Lecture Notes in Computer Science, 2493,
(2002), 69-81.

[10] H. Schmid, T. Worsch, The firing squad synchronization problem with many gen-
erals for one-dimensional CA,IFIP TCS 2004, (2004), 111-124.

[11] J.-B. Yunès, Seven-state solution to the firing squad synchronization problem,
Theoretical Computer Science, 127(2), (1994), 313-332.

[12] The P systems web page.http://ppage.psystems.eu .

(Tissue) P Systems Using Noncooperative Rules
Without Halting Conditions

———————————————
Markus Beyreder, Rudolf Freund

Vienna University of Technology, Faculty of Informatics,
Favoritenstr. 9, A-1040 Wien, Austria
{markus,rudi }@emcc.at

We consider (tissue) P systems using noncooperative rules,but considering
computations without halting conditions. As results of a computation we take
the contents of a specified output membrane/cell in each derivation step, no
matter whether this computation will ever halt or not, eventually taking only re-
sults completely consisting of terminal objects only. The computational power
of (tissue) P systems using noncooperative rules turns out to be equivalent to
that of (E)0L systems.

1 Introduction

In contrast to the original model of P systems introduced in [5], in this paper we only
consider noncooperative rules. Moreover, as results of a computation we take the con-
tents of a specified output membrane in each derivation step,no matter whether this
computation will ever halt or not, eventually taking only results completely consisting
of terminal objects. In every derivation step, we apply the traditional maximal paral-
lelism. Other derivation modes could be considered, too, but, for example, applying the
sequential derivation mode would not allow us to go beyond context-free languages.
As the model defined in this paper we shall take the more general one of tissue P
systems (where the communication structure of the system isan arbitrary graph, e.g.,
see [4], [2]), which as a specific subvariant includes the original model of membrane
systems if the communication structure allows for arranging the cells in a hierarchical
tree structure.

The motivation to consider this specific variant of tissue P systems came during the
Sixth Brainstorming Week in Sevilla 2008 when discussing the ideas presented in [3]
with the authors Miguel Gutiérrez-Naranjo and Mario Pérez-Jiménez. They consider
the evolution of deterministic (tissue) P systems with simple (i.e., noncooperative) rules
and aim to find a mathematically sound representation of suchsystems in order to de-
duce their behavior and, on the other hand, to find suitable corresponding P systems
for a given mathematical system with specific behavior. Whereas in that paper only de-
terministic P systems are considered, which allows for a mathematical representation

86 (Tissue) P Systems Using Noncooperative Rules Without Halting Conditions

like for deterministic 0L systems, and as well real values for the coefficients assigned to
the symbols are allowed, in this paper we restrict ourselvesto the non-negative integer
coefficients commonly used in traditional variants of (tissue) P systems.

We shall prove that the computational power of extended tissue P systems using nonco-
operative rules is equivalent to that of E0L systems when taking all results appearing in
the specified output cell consisting of terminal objects only.

The present paper is organized as follows. Section 2 briefly recalls the notations com-
monly used in membrane computing and the few notions of formal language theory that
will be used in the rest of the paper; in particular, we reportthe definition of (extended)
Lindenmayer systems. Section 3 is dedicated to the definition of tissue P systems with
noncooperative rules working in the maximally parallel derivation mode. The compu-
tational power of these classes of (extended) tissue P systems is then investigated in
Section 4 in comparison with the power of the corresponding classes of (extended)
Lindenmayer systems. Some further remarks and directions for future research are dis-
cussed in the last section.

2 Preliminaries

We here recall some basic notions concerning the notations commonly used in mem-
brane computing (we refer to [6] for further details and to [9] for the actual state of the
art in the area of P systems) and the few notions of formal language theory we need in
the rest of the paper (see, for example, [8] and [1], as well as[7] for the mathematical
theory of L systems).

An alphabet is a finite non-empty set of abstract symbols. Given an alphabetV , by
V ∗ we denote the set of all possible strings overV , including the empty stringλ.
The length of a stringx ∈ V ∗ is denoted by|x| and, for eacha ∈ V , |x|a denotes
the number of occurrences of the symbola in x. A multiset overV is a mapping
M : V −→ N such thatM(a) defines the multiplicity ofa in the multisetM (N
denotes the set of non-negative integers). Such a multiset can be represented by a string
a

M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ V ∗ and by all its permutations, withaj ∈ V , M(aj) ≥ 0,

1 ≤ j ≤ n. In other words, we can say that each stringx ∈ V ∗ identifies a finite
multiset overV defined byMx = {(a, |x|a) | a ∈ V }. Ordering the symbols inV in
a specific way, i.e.,(a1, . . . , an) such that{a1, . . . , an} = V , we get a Parikh vec-
tor
(
|x|a1

, . . . , |x|an

)
associated withx. The set of all multisets overV is denoted by

MV , the set of all Parikh vectors byPs (V ∗). In the following, we shall not distinguish
between multisets and the corresponding Parikh vectors. Given two multisetsx andy,
with x, y ∈ V ∗, we say that the multisetx includes the multisety, or the multisety is
included in the multisetx, and we writex ⊒ y, or y ⊑ x, if and only if |x|a ≥ |y|a, for
everya ∈ V . The union of two multisetsx andy is denoted byx ⊔ y and is defined to

(Tissue) P Systems Using Noncooperative Rules Without Halting Conditions 87

be the multiset with|x ⊔ y|a = |x|a + |y|a, for everya ∈ V . Form, n ∈ N, by [m..n]
we denote the set{x ∈ N | m ≤ x ≤ n}.

An extended Lindenmayer system (an E0L system for short) is aconstructG = (V, T,
P, w), whereV is an alphabet,T ⊆ V is theterminalalphabet,w ∈ V ∗ is theaxiom,
andP is a finite set ofnoncooperative rulesoverV of the forma → x. In a derivation
step, each symbol present in the current sentential form is rewritten using one rule ar-
bitrarily chosen fromP . The language generated byG, denoted byL(G), consists of
all the strings overT which can be generated in this way by starting fromw. An E0L
system withT = V is called a 0L system. As a technical detail we have to mentionthat
in the theory of Lindenmayer systems usually it is required that for every symbola from
V at least one rulea → w in P exists. If for every symbola from V exactly one rule
a → w in P exists, then this Lindenmayer system is calleddeterministic, and we use
the notations DE0L and D0L systems. ByE0L and0L (DE0L andD0L) we denote
the families of languages generated by (deterministic) E0Lsystems and 0L systems,
respectively. It is known from [8] thatCF ⊂ E0L ⊂ CS, with CF being the family
of context-free languages andCS being the family of context-sensitive languages, and
thatCF and0L are incomparable, with

{
a2n | n ≥ 0

}
∈ D0L− CF .

As the paper deals with P systems where we consider symbol objects, we will also con-
sider E0L systems as devices that generate sets of (vectors of) non-negative integers; to
this aim, given an E0L systemG, we define the set of non-negative integers generated by
G as the length setN(G) = { |x| | x ∈ L(G) } as well asPs (G) to be the set of Parikh
vectors corresponding to the strings inL (G). In the same way, the length sets and the
Parikh sets of the languages generated by context-free and context-sensitive grammars
can be defined. The corresponding families of sets of (vectors of) non-negative inte-
gers then are denoted byNX andPsX , for X ∈ {E0L, 0L, DE0L, D0L, CF, CS},
respectively.

3 Tissue P Systems With Noncooperative Rules

Now we formally introduce the notion of tissue P systems withnoncooperative rules by
giving the following definition.

Definition 1 Anextended tissue P system with noncooperative rulesis a construct

Π = (n, V, T, R, C0, i0)

where

1. n is the number ofcells;
2. V is a finite alphabet of symbols calledobjects;
3. T ⊆ V is a finite alphabet ofterminal symbols(terminal objects);

88 (Tissue) P Systems Using Noncooperative Rules Without Halting Conditions

4. R is a finite set of multiset rewriting rules of the form

(a, i)→ (b1, h1) . . . (bk, hk)

for i ∈ [1..k] , a ∈ V as well asbj ∈ V andhj ∈ [1..n] , j ∈ [1..k];
5. C0 = (w1, . . . , wn), where thewi ∈ V ∗, i ∈ [1..n], are finite multisets of objects

for eachi ∈ [1..n],
6. i0 is theoutput cell.

A rule (a, i)→ (b1, h1) . . . (bk, hk) in Ri indicates that a copy of the symbola in cell i
is erased and instead, for allj ∈ [1..k], a copy of the symbolbj is added in cellhj .

In any configuration of the tissue P system, a copy of the symbol a in cell i is represented
by (a, i), i.e.,(a, i) is an element ofV × [1..n].

Π is calleddeterministicif in every cell for every symbol fromV exactly one rule exists.

¿From the initial configuration specified by(w1, ..., wn), the system evolves by transi-
tions getting from one configuration to the next one by applying a maximal set of rules
in every cell, i.e., by working in themaximally parallel derivation mode. A computa-
tion is a sequence of transitions. In contrast to the common use ofP systems to generate
sets of multisets, as a result of the P system we take the contents of celli0, provided
it only consists of terminal objects only, at each step of anycomputation, no matter
whether this computation will ever stop or not, i.e., we do not take into account any
halting condition, which in the following will be denoted byusing the subscriptu (for
unconditional halting): the set of all multisets generated in that way byΠ is denoted
by Lu (Π). If we are only interested in the number of symbols instead ofthe Parikh
vectors, the corresponding set of numbers generated byΠ is denoted byNu (Π).

The family of sets of multisets generated by tissue P systemswith noncooperative
rules with at mostn cells in the maximally parallel derivation mode is denoted by
PsEOtPn (ncoo, max, u) (u again stands for unconditional halting). Considering only
the length sets instead of the Parikh vectors of the results obtained in the output cell
during the computations of the tissue P systems, we obtain the family of sets of non-
negative integers generated by tissue P systems with noncooperative rules with at mostn
cells in the maximally parallel derivation mode, denoted byNEOtPn (ncoo, max, u).
The corresponding families generated by non-extended tissue P systems – where all
symbols are terminal – are denoted byXOtPn (ncoo, max, u), X ∈ {Ps, N}. For all
families generated by (extended) tissue P systems as definedbefore, we add the symbol
D in front of t if the underlying systems are deterministic. If the number of cells is
allowed to be arbitrarily chosen, we replacen by ∗.

3.1 A well-known example Consider the D0L system with the only rulea → aa,
i.e.,

(Tissue) P Systems Using Noncooperative Rules Without Halting Conditions 89

G = ({a} , {a} , {a→ aa} , a) .

As is well known, the language generated byG is
{
a2n | n ≥ 0

}
and thereforeN (G) =

{2n | n ≥ 0}.

The corresponding deterministic one-cell tissue P system is

Π = ({a} , {a} , {(a, 1)→ (a, 1) (a, 1)} , (a)) .

Obviously, we getLu (Π) = Ps (L (G)) andN (G) = Nu (Π).

We should like to point out that in contrast to this tissue P system without imposing
halting, there exists no tissue P system with only one symbolin one cell

Π = ({a} , {a} , R, (w))

that with imposing halting is able to generate{2n | n ≥ 0}, because such systems can
generate only finite sets (singletons or the empty set):

• if w = λ, thenNu (Π) = {0};
• if R is empty, thenNu (Π) = {|w|};
• if w 6= λ andR contains the rulea→ λ, thenNu (Π) = {0}, because no compu-

tation can stop as long as the contents of the cell is not empty;
• if w 6= λ andR is not empty, but does not contain the rulea → λ, thenR must

contain a rule of the forma→ an for somen ≥ 1, yet this means that there exists
no halting computation, i.e.,Nu (Π) is empty.

4 The Computational Power of Tissue P Systems With
Noncooperative Rules

In this section we present some results concerning the generative power of (extended)
tissue P systems with noncooperative rules; as we shall show, there is a strong corre-
spondence between these P systems with noncooperative rules and E0L systems.

Theorem 1 For all n ≥ 1,

PsE0L = PsEOtPn (ncoo, max, u)

= PsEOtP∗ (ncoo, max, u) .

90 (Tissue) P Systems Using Noncooperative Rules Without Halting Conditions

Proof We first show that

PsE0L ⊆ PsEOtP1 (ncoo, max, u) :

Let G = (V, T, P, w) be an E0L system. Then we construct the corresponding extended
one-cell tissue P system

Π = (1, V, T, R, (w) , 1)

with
R = {(a, 1)→ (b1, 1) . . . (bk, 1) | a→ b1 . . . bk ∈ P} .

Due to the maximal parallel derivation mode applied in the extended tissue P system
Π, the derivations inΠ directly correspond to the derivations inG. Hence,L (Π) =
Ps (L (G)).

As for all n ≥ 1, by definition we have

PsEOtP1 (ncoo, max, u) ⊆ PsEOtPn (ncoo, max, u) ,

it only remains to show that

PsEOtP∗ (ncoo, max, u) ⊆ PsE0L :

Let
Π = (n, V, T, R, (w1, . . . , wn) , i0)

be an extended tissue P system. Then we first construct the E0Lsystem

G = (V × [1..n] , T0, P, w)

with
w = ⊔n

i=1hi (wi)

(⊔ represents the union of multisets) and

T0 = hi0 (T) ∪ ∪j∈[1..n],j 6=i0hj (V)

where thehi : V ∗ → {(a, i) | a ∈ V }∗ are morphisms withhi (a) = (a, i) for a ∈ V
andi ∈ [1..n], as well as

P = R ∪ P ′

whereP ′ contains the rule(a, i) → (a, i) for a ∈ V andi ∈ [1..n] if and only if R
contains no rule for(a, i) (which guarantees that inP there exists at least one rule for
everyb ∈ V × [1..n]).

We now take the projectionh : T ∗
0 → T ∗ with h ((a, i0)) = a for all a ∈ T and

h ((a, j)) = λ for all a ∈ V andj ∈ [1..n], j 6= i0. Due to the direct correspondence of
derivations inΠ andG, respectively, we immediately obtainPs (h (L (G))) = Lu (Π).

AsE0L is closed under morphisms (e.g., see [8], vol. 1, p. 266f.) and thereforeLu (Π) =
Ps (L (G′)) for some E0L systemG′, we finally obtainLu (Π) ∈ PsE0L. 2

(Tissue) P Systems Using Noncooperative Rules Without Halting Conditions 91

As an immediate consequence of Theorem 1, we obtain the following results:

Corollary 1 For all n ≥ 1,

NE0L = NEOtPn (ncoo, max, u)

= NEOtP∗ (ncoo, max, u) .

Proof Given an E0L systemG, we construct the corresponding extended tissue P sys-
tem Π as above in Theorem 1; then we immediately inferN (G) = Nu (Π). On the
other hand, given an extended tissue P systemΠ, by the constructions elaborated in
Theorem 1, we obtain

Nu (Π) = N (G′) = {|x| | x ∈ h (L (G))}

and thereforeNu (Π) ∈ NE0L. 2

Corollary 2 For X ∈ {Ps, N}, X0L = XOtP1 (ncoo, max, u) .

Proof This result immediately follows from the constructions elaborated in Theorem 1
with the specific restriction that for proving the inclusion

PsOtP1 (ncoo, max, u) ⊆ Ps0L

we can directly work with the symbols ofV from the given non-extended tissue P sys-
temΠ for the 0L systemG to be constructed (instead of the symbols fromV ×{1}) and
thus do not need the projectionh to get the desired resultLu (Π) = L (G) ∈ Ps0L.
Besides this important technical detail, the results of this corollary directly follow from
Theorem 1 and Corollary 1, because any non-extended system corresponds to an ex-
tended system where all symbols are terminal. 2

For tissue P systems with only one cell, the noncooperative rules can also be interpreted
as antiport rules in the following sense: an antiport rule ofthe forma/x in a single-cell
tissue P system means that the symbola goes out to the environment and from there
(every symbol is assumed to be available in the environment in an unbounded num-
ber) the multisetx enters the single cell. The families of Parikh sets and length sets
generated by (extended, non-extended) one-cell tissue P systems using antiport rules of
this specific form working in the maximally parallel derivation mode are denoted by
XEOtP1 (anti1,∗, max, u) andXOtP1 (anti1,∗, max, u) for X ∈ {Ps, N}, respec-
tively. We then get the following corollary:

92 (Tissue) P Systems Using Noncooperative Rules Without Halting Conditions

Corollary 3 For X ∈ {Ps, N},

XEOtP1 (anti1,∗, max, u) = XE0L

and

XOtP1 (anti1,∗, max, u) = X0L.

Proof The results immediately follow from the previous results and the fact that the
application of an antiport rulea/b1 . . . bk has exactly the same effect on the contents of
the single cell as the noncooperative evolution rule(a, 1)→ (b1, 1) . . . (bk, 1). 2

For one-cell tissue P systems, we obtain a characterizationof the families generated by
the deterministic variants of these systems by the familiesgenerated by the correspond-
ing variants of Lindenmayer systems:

Corollary 4 For X ∈ {Ps, N} andY ∈ {ncoo, anti1,∗},

XED0L = XEDOtP1 (Y, max)

and

XD0L = XDOtP1 (Y, max) .

Proof As already mentioned in the proof of Corollary 2, the resultsimmediately follow
from the constructions elaborated in Theorem 1 with the specific restriction that for
proving the inclusionPsEDOtP1 (ncoo, max, u) ⊆ PsED0L we can directly work
with the symbols ofV from the given (extended) deterministic tissue P systemΠ for
the ED0L systemG to be constructed (instead of the symbols fromV × {1}) and thus
do not need the projectionh to get the desired resultL (Π) = Lu (G) ∈ PsED0L. The
remaining statements follow from these constructions in a similar way as the results
stated in Corollaries 1, 2, and 3. 2

The constructions described in the proofs of Corollary 2 and4 cannot be extended to
(non-extended, deterministic) tissue P systems with an arbitrary number of cells, be-
cause in that case again the application of a projectionh would be needed.

(Tissue) P Systems Using Noncooperative Rules Without Halting Conditions 93

5 Conclusions and Future Research

In this paper we have shown that the Parikh sets as well as the length sets generated by
(extended) tissue P systems with noncooperative rules (without halting) coincide with
the Parikh sets as well as the length sets generated by (extended) Lindenmayer systems.

In the future, we may also consider other variants of extracting results from computa-
tions in (extended) tissue P systems with noncooperative rules, for example, variants of
halting computations or only infinite computations, as wellas other derivation modes as
the sequential or the minimally parallel derivation mode. For the extraction of results,
instead of the intersection with a terminal alphabet we may also use other criteria like
the occurrence/absence of a specific symbol.

As inspired by the ideas elaborated in [3], we may investigate in more detail the evolu-
tion/behavior of deterministic tissue P systems with noncooperative rules based on the
mathematical theory of Lindenmayer systems: as there is a one-to-one correspondence
between deterministic tissue P systems with noncooperative rules in one cell and D0L
systems, the well-known mathematical theory for D0L systems can directly be used to
describe/ investigate the behavior of the corresponding deterministic tissue P systems
with noncooperative rules.

Acknowledgements. The authors gratefully acknowledge the interesting discussions
with Miguel Gutiérrez-Naranjo and Mario Pérez-Jiménezon the ideas presented in their
paper [3].

Bibliography

[1] J. Dassow and Gh. Păun,Regulated Rewriting in Formal Language Theory. EATCS
Monograph in Theoretical Computer Science, Springer, Berlin, 1989.

[2] R. Freund, Gh. Păun, and M.J. Pérez-Jiménez, Tissue-like P systems with channel
states.Theoretical Computer Science330(2005), 101–116.

[3] M.A. Gutiérrez-Naranjo and M.J. Pérez-Jiménez, Efficient computation in real-
valued P systems, Proceedings Sixth Brainstorming Workshop On Membrane Com-
puting (BWMC08), to appear.

[4] C. Martı́n-Vide, Gh. Păun, J. Pazos, and A. Rodrı́guez-Patón, Tissue P Systems,
Theoretical Computer Science, 296(2003), 295–326.

[5] Gh. Păun, Computing with Membranes,Journal of Computer and System Sciences,
61 (2000), 108–143.

[6] Gh. Păun,Membrane Computing. An Introduction. Natural Computing Series,
Springer, Berlin, 2002.

[7] G. Rozenberg and A. Salomaa,The Mathematical Theory of L Systems. Academic
Press, New York, 1980.

94 (Tissue) P Systems Using Noncooperative Rules Without Halting Conditions

[8] G. Rozenberg and A. Salomaa (Eds),Handbook of Formal Languages. 3 volumes,
Springer, Berlin, 1997.

[9] The P Systems Web Page:http://ppage.psystems.eu .

Modelling Ecosystems using P Systems:
The Bearded Vulture, a case study

———————————————
Mónica Cardona1, M. Angels Colomer1, Mario J. Pérez-Jiménez2,
Delfı́ Sanuy3, Antoni Margalida4

1University of Lleida, Dpt. of Mathematics,
Av. Alcalde Rovira Roure, 191. 25198 Lleida, Spain
{mcardona,colomer }@matematica.udl.es

2University of Sevilla, Dpt. of Computer Science and Artificial Intelligence,
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
marper@us.es

3University of Lleida, Dpt. of Animal Production,
Av. Alcalde Rovira Roure, 191. 25198 Lleida, Spain
dsanuy@prodan.udl.cat

4Bearded Vulture Study & Protection Group
Adpo. 43 E-25520 El Pont de Suert (Lleida),Spain
margalida@inf.entorno.es

The Bearded Vulture (Gypaetus barbatus) is an endangered species in Europe
that feeds almost exclusively on bone remains provided by wild and domestic
ungulates. In this paper, we present a model of an ecosystem related with the
Bearded Vulture in the Pyrenees (NE Spain), by using P systems. The evolu-
tion of six species are studied: the Bearded Vulture and other five subfamilies
of domestic and wild ungulates that provide the bones they feed on. P systems
provide a high level computational modelling framework which integrates the
structural and dynamical aspects of ecosystems in a compressive and relevant
way. P systems explicitly represent the discrete characterof the components of
an ecosystem by using rewriting rules on multisets of objects which represent
individuals of the population and bones. The inherent stochasticity and uncer-
tainty in ecosystems is captured by using probabilistic strategies. In order to
give an experimental validation of the P system designed, wehave constructed
a simulator that allows us to analyse the evolution of the ecosystem under dif-
ferent initial conditions.

1 Introduction

Animal species are interconnected in a network in which somespecies depend other
ones in terms of feeding [10], [26]. Variations of differentbiomass affects the com-
position of the population structures [24]. In mountain ecosystems, with a traditional

96 Modelling Ecosystems using P Systems: The Bearded Vulture, a case study

relationship between wild ungulates and their predators has been disrupted by the pres-
ence of domestic animals [6]. Animals located at the top of the ecological pyramid are
susceptible to their presence and number. The abandonment of dead animals on the
mountains is a major source of food for necrophagous species[15]. This is the case
of the Bearded Vulture (Gypaetus barbatus) a threatened species which feeds on bone
remains of domestic and wild ungulates.

The study of population ecology and how the species interactwith the environment
[13] is one of the aspects of the conservation biology of moreinterest for managers
and conservationists [2]. A widespread tool used are the ecological models, which use
mathematical representations of ecological processes [21].

In this study, we design a model that studies the evolution ofan ecosystem located
in the Pyrenees, taking advantage of the capacity the P Systems to work in parallel.
P systems provide a high level computational modelling framework which integrates
the structural and dynamical aspects of ecosystems in a compressive and relevant way.
P systems explicitly represent the discrete character of the components of an ecosys-
tem by using rewriting rules on multisets of objects which represent individuals of the
population and biomass available. The inherent stochasticity and uncertainty in ecosys-
tems is captured by using probabilistic strategies. The ecosystem included six species:
Bearded Vulture as scavenger (predator) species and the Pyrenean Chamois (Rupicapra
pyrenaica), Red Deer (Cervus elaphus), Fallow Deer (Dama dama), Roe Deer (Capre-
olus capreolus) and Sheep (Ovis capra) as carrion (prey) species. In order to give an
experimental validation of the P system, designed we have constructed a simulator that
allows us to analyse the evolution of the ecosystem under different initial conditions.
The Bearded Vulture is an endangered species and so there aremany projects that study
its behaviour and how it is affected by its environment. Thanks to these studies there is
a large amount of information available which is required todefine the P System and to
validate the results obtained.

The paper is structured as follows. In the next section, basic concepts of the ecosystem
to be modelled are introduced. The most outstanding aspectsof each species are detailed
as well as the interactions among them. In Section 3, a dynamical probabilistic P system
to describe the ecosystem is presented. In order to study thedynamics of the ecosystem,
a simulator of that probabilistic P system is designed in Section 4. The following section
is devoted to the analysis of the results produced by the simulator. Finally, conclusions
are presented in the last section.

2 Modelling the Ecosystem

The ecosystem to be modelled is located in the Catalan Pyrenees, in the Northeast of
Spain. This area contains a total of 35 breeding territoriesthat constitutes 34.3% of the
Bearded Vulture Spanish population in 2007 (n = 102). See Figure 1 [15].

Modelling Ecosystems using P Systems: The Bearded Vulture, a case study 97

Fig. 2.1 Regional distribution of the Bearded Vulture in the CatalanPyrenees (NE Spain).

Fig. 1. Regional distribution of the Bearded Vulture in the CatalanPyrenees

The ecosystem to be modelled is composed of six species: the Bearded Vulture (predator
species) and the Pyrenean Chamois, Red Deer, Fallow Deer, Roe Deer, and Sheep (prey
species). Prey species belong to the bovid family, they are herbivores and their bone
remains form the basic source of nourishment for the BeardedVulture in the Pyrenees.

The Bearded Vulture is a cliff-nesting and territorial large scavenger distributed in
mountains ranges in Eurasia and Africa. This is one of the rarest raptors in Europe (150
breeding pairs in 2007). This species has a mean lifespan in wild birds of 21.4 years [4].
The mean age of first breeding is 8.1 years, whereas the mean age of first successful
breeding was 11.4 years [1]. Egg-laying take places during December-February and af-
ter 52-54 days of incubation and around 120 days of chick-rearing, the chick abandons
the nest between June-August [19]. Clutch size in this species is usually of two eggs,
but only one chick survives as a consequence of sibling aggression [18]. The female’s
annual fertility rate in Catalonia during the last five yearsis estimated around 38%.

The Bearded Vulture is the only vertebrate that feeds almostexclusively on bone re-
mains. Its main food source is bone remains of dead small and medium-sized animals.
In the Pyrenees, the remains of Pyrenean Chamois, Red Deer, Fallow Deer, Roe Deer,
and Sheep form 67% of the vulture’s food resources, and the rest 33% includes the re-
mains of small size mammals (e.g., dogs, cats), large mammals (cows, horses), medium
size mammals (e.g., wild boars) and birds [15]. A pair of Bearded Vultures needs an
average 341 Kg of bones per year [17], [16].

In the first year, Bearded Vultures remain in the territory where they were born. During
the dispersal period (from fledgling until the bird become territorial at 6–7 years), non-
adult Bearded Vultures cover large distances surveying different areas. For example,
the averaged surface covered by four youngs monitored afterfledging was 4932km2

98 Modelling Ecosystems using P Systems: The Bearded Vulture, a case study

(range 950-10294km2, [23]). Breeding birds are territorial and the approximatehome
ranges obtained for eight pairs studied varied between 250km2 and 650km2. The
average annual growth in the population of the Bearded Vultures in the Pyrenees has
been estimated in 4-5%. The floating population principallyremains in feeding stations
situated in the central Pyrenees (Aragon).

The natural behaviour of the five bovid species is similar because they are all herbivores
and they all reach the size of the adult animal when they are one year old. In general,
they arrive at the sexual maturity within two years from birth. Pyrenean Chamois and
the Red Deer have a longer life expectancy than Fallow Deer and Roe Deer (for a review
of population parameters see [7], [8], [3], [9] and [20]. Thenatural mortality rates are
similar in all five species, in the first year of life it is calculated to be 50% and 6% during
there maining years. In spite of the great degree of similarity between these five species,
there are differences between them, some are of natural origin and other are induced by
human action. It is essential to bear them in mind in order to define a P system that can
simulate the ecosystem in a reliable way.

Red Deer are appreciated very much by hunters, not for their meat but as a trophy and
so only the males are hunted. This causes the natural evolution of the population to be
modified. The hunter only takes the head as a trophy leaving the animal’s body on the
field, and so the carcass is eaten by other species and the bones may then be eaten by
the Bearded Vulture.

Fallow Deer and Roe Deer live in areas that are difficult to reach and for this reason, the
Bearded Vulture cannot take advantage of the bones of all of the dead animals.

As sheep [25] are domestic animals, humans exert a high levelof control over their
populations. The size and growth of the sheep population is limited by the owners of
the flocks. The natural average life expectancy of sheep is longer that their actual life
expectancy in the field because when its fertility rate decreases at the age of eight, they
are taken out of the habitat. Most of the lambs are sold to market and so they are taken
out of the habitat in the first year of life. Only 20%–30% of thelambs, mostly females,
are left in the field and these are used to replace sheep that have died naturally and the
old ones that have been removed from the flock. The number of animals in the Catalan
Pyrenees the years 1994 and 2008 it is shown in Table 6.1 (see Appendix).

In this study, the feeding of the Bearded Vulture is dependent on the evolution of the P
System. However the P System does not consider that the availability of food limits the
feeding of the herbivorous, and so the growth of the vegetation is not modelled.

Taking all this background information into consideration, the following data was re-
quired for each species:

Modelling Ecosystems using P Systems: The Bearded Vulture, a case study 99

• I1: age at which adult size is reached. Age at which the animal eats like the adult
animal does. Moreover, at this age it will have surpassed thecritical early phase
during which the mortality rate is high;

• I2: age at which it start to be fertile;

• I3: age at which it stops being fertile;

• I4: average life expectancy;

• I5: fertility ratio (number of descendants by fertile female);

• I6: mortality ratio in first years (age < I1);

• I7: mortality ratio in adult animals (age ≥ I1);

• I8: percentage of females in the population.

The required information about each species is shown in Table 6.2 (see Appendix).

When an animal dies, the weight of bones which it leaves is around 20% of its total
weight. Table 6.3 (see Appendix) shows the average weight ofeach animal as well as
the weight of bones they leave. In the case of Fallow Deer and Roe Deer, the value of
the weight of bones is then be multiplied by 0,2 (20%) which isthe proportion of bones
the Bearded Vulture may profit from.

In the P system, it is only considered the Bearded Vulture older than 8, because the
younger ones are floating birds. There are seven feeding stations in Catalonia which
provide around 10500 kg of bone remains annually. These artificial feeding sites have
not been considered in the study and most of the floating birdsfeeds at them.

3 A P System Based Model of the Ecosystem

Membrane computing is a branch of Natural Computing that wasinitiated at the end of
1998 by Gh. Păun (by a paper circulated at that time on web andpublished in 2000 [22]).
Since then it has received important attention from the scientific community. Details can
be found at the web pagehttp://ppage.psystems.eu/ , maintained in Vienna
under the auspices of the European Molecular Computing Consortium, EMCC.

In short, one abstracts computing models from the structureand the functioning of living
cells, as well as from the organization of cell in tissues, organs, and other higher order
structures. The main components of such a model are a cell-like membrane structure,
in the compartmentsof which one placesmultisets of symbol-objectswhich evolve
in a synchronous maximally parallel manner according to given evolution rules, also
associated with the membranes.

The semanticof the P systems is defined as follows: aconfigurationof a P system
consists of a membrane structure and a family of multisets ofobjects associated with

100 Modelling Ecosystems using P Systems: The Bearded Vulture, a case study

each region of the structure. At the beginning, there is a configuration called theinitial
configurationof the system.

In each time unit we can transform a given configuration in another one by applying
the evolution rules to the objects placed inside the regionsof the configurations, in
a non–deterministic, and maximally parallel manner (the rules are chosen in a non–
deterministic way, and in each region all objects that can evolve must do it). In this way,
we gettransitionsfrom one configuration of the system to the next one.

A computationof the system is a (finite or infinite) sequence of configurations such
that each ones is obtained from the previous one by a transition, and shows how the
system is evolving. A computation which reaches a configuration where no more rules
can be applied to the existing objects, is called ahalting computation. The result of a
halting computation is usually encoded by the multiset associated with a specific output
membrane (or the environment) in the final configuration.

In this section, we present a model of the ecosystem described in Section 2 by means
of probabilistic P systems. We will study the behaviour of this ecosystem under diverse
initial conditions.

First, we define the P systems based framework (probabilistic P systems), where ad-
ditional features such as two electrical charges which describe specific properties in a
better way, are used.

Definition 1 A probabilistic P system of degreen is a tuple

Π = (Γ, µ,M1, . . . ,Mn, R, {cr}r∈R)

where:

• Γ is the alphabet (finite and nonempty) of objects (the workingalphabet);
• µ is a membrane structure, consisting ofn membranes, labeled1, 2, . . . , n. The

skin membrane is labeled by 0. We also associate electrical charges with mem-
branes from the set{0, +}, neutral and positive;

• M1, . . . ,Mn are strings overΓ, describing the multisets of objects initially placed
in then regions ofµ;

• R is a finite set of evolution rules. An evolution rule associated with the membrane
labelled byi is of the formr : u[v]i

cr−→u′[v′]i, whereu, v, u′, v′ are a multiset
overΓ andcr is a real number between 0 and 1 associated with the rule.

We assume that a global clock exists, marking the time for thewhole system (for all
compartments of the system); that is, all membranes and the application of all rules are
synchronized.

Modelling Ecosystems using P Systems: The Bearded Vulture, a case study 101

Then-tuple of multisets of objects present at any moment in then regionsof the system
constitutes theconfigurationof the system at that moment. The tuple(M1, . . . ,Mn) is
the initial configuration of the system.

The P system can pass from one configuration to another one by using the rules fromR
as follows: at each transition step, the rules to be applied are selected according to the
probabilities assigned to them, and all applicable rules are simultaneously applied and
all occurrences of the left–hand side of the rules are consumed, as usual.

3.1 The model Our model consists in the following probabilistic P system of degree
2 with two electrical charges (neutral and positive):

Π = (Γ, µ,M1,M2, R, {cr}r∈R)

where:

• In the alphabetΓ, we represent the six species of the ecosystem (indexi is asso-
ciated with the species and indexj is associated with their age, and the symbols
X , Y andZ represent the same animal but in different state); it also contains the
auxiliary symbolsB, which represents0.5 kgs of bones, andC, which allows to
change the polarization of membrane labelled by 2 in a specific stage.

Γ = {Xij, Yij , Zij : 1 ≤ i ≤ 7, 0 ≤ j ≤ ki,4} ∪ { B, C}

• In the membrane structure, we represent two regions, the skin (where animals re-
produce) and an inner membrane (where animals feed and die):µ = [[]2]1
(neutral polarization will be omitted);

• InM1 andM2, we specify the initial number of objects present in each regions
(encoding the initial population and the initial food);

∗ M1 = {Xqij

ij : 1 ≤ i ≤ 7, 0 ≤ j ≤ ki,4}, where the multiplicityqij indicates
the number of animals, of speciesi whose age isj that are initially present in
the ecosystem;

∗ M2 = {C Bα}, whereα is defined as follows:

α = ⌈
21∑

j=1

q1j · 1.10 · 682⌉

Valueα represents an external contribution of food which is added during the
first year of study so that the Bearded Vulture survives. In the formula,q1j

represents the number ofj years of age Bearded Vultures, constant 1.10 rep-
resents 10% of the population growth and constant 682 represents the amount
of food needed per year for a Bearded Vulture pair to survive.

• The setR of evolution rules consists of:

102 Modelling Ecosystems using P Systems: The Bearded Vulture, a case study

∗ Reproduction-rules.

Adult males:

◦ r0 ≡ [Xij

(1−ki,14)·(1−ki,16)−−−→ Yij]1, 1 ≤ i ≤ 7, ki,2 ≤ j ≤ ki,4.

Adult females that reproduce:

◦ r1 ≡ [Xij

ki,5 ·ki,14·(1−ki,16)−−−→ YijYi0]1, 1 ≤ i ≤ 7, ki,2 ≤ j < ki,3.

Adult females that do not reproduce:

◦ r2 ≡ [Xij

(1−ki,5)·ki,14 ·(1−ki,16)−−−→ Yij]1, 1 ≤ i ≤ 7, ki,2 ≤ j < ki,3.

Young animals that do not reproduce:

◦ r3 ≡ [Xij

1−ki,16−−−→Yij]1, 1 ≤ i ≤ 7, 0 ≤ j < ki,2.

∗ Growth rules.
◦ r4 ≡ [Xij

(ki,6+ki,9)·ki,16−−−→ Yiki,2Yij]1, 1 ≤ i ≤ 7, ki,2 ≤ j < ki,4.

◦ r5 ≡ [Xij

ki,6 ·ki,16−−−→ Yiki,2Yij]1, 1 ≤ i ≤ 7, j = ki,4.

◦ r6 ≡ [Xij

(1−ki,6−ki,9)·ki,16−−−→ Yij]1, 1 ≤ i ≤ 7, ki,2 ≤ j ≤ ki,4.

∗ Young animals mortality rules.

Those which survive:

◦ r7 ≡ Yij []2
1−ki,7−ki,8−−−→ [Zij]2 : 1 ≤ i ≤ 7, 0 ≤ j < ki,1.

Those which die and leaving bones:

◦ r8 ≡ Yij []2
ki,8−−−→[Bki,12]2 : 1 ≤ i ≤ 7, 0 ≤ j < ki,1.

Those which die and do not leave bones:

◦ r9 ≡ Yij []2
ki,7−−−→[]2 : 1 ≤ i ≤ 7, 0 ≤ j < ki,1.

∗ Adult animals mortality rules.

Those which survive:

◦ r10 ≡ Yij []2
1−ki,9−ki,10−−−→ [Zij]2 : 1 ≤ i ≤ 7, ki,1 ≤ j < ki,4.

Those which die leaving bones:

◦ r11 ≡ Yij []2
ki,10−−−→[Bki,13]2 : 1 ≤ i ≤ 7, ki,1 ≤ j < ki,4.

Those which die and do not leave bones:

◦ r12 ≡ Yij []2
ki,9−−−→[]2 : 1 ≤ i ≤ 7, ki,1 ≤ j < k1,4.

Animals that die at an average life expectancy:

◦ r13 ≡ Yij []2
1−ki,16−−−→[Bki,11·ki,13]2 : 1 ≤ i ≤ 7, j = ki,4.

Modelling Ecosystems using P Systems: The Bearded Vulture, a case study 103

◦ r14 ≡ Yij []2
ki,16−−−→[Ziki,2]2 : 1 ≤ i ≤ 7, j = ki,4.

∗ Feeding rules.

◦ r15 ≡ [ZijB
ki,15]2 → Xij+1[]+2 : 1 ≤ i ≤ 7, 0 ≤ j ≤ ki,4.

∗ Rules of mortality due to a lack of food, and the elimination of those bones
that are not eaten by the Bearded Vulture from the system.

Elimination of remaining bones:

◦ r16 ≡ [B]+2 → []2.

◦ r17 ≡ [C]+2 → [C]2.

Adult animals that die because they have not enough food:

◦ r18 ≡ [Zij]
+
2 → [Bki,11·ki,13]2 : 1 ≤ i ≤ 7, ki,1 ≤ j ≤ ki,4

Young animals that die because they have not enough food:

◦ r19 ≡ [Zij]
+
2 → [Bki,11·ki,12]2 : 1 ≤ i ≤ 7, j < ki,1

The constants associated with the rules have the following meaning:

• ki,1: age at which adult size is reached. This is the age at which the animal eats like
the adult does, and at which if the animal dies, the amount of biomass it leaves is
similar to the total one left by an adult. Moreover, at this age it will have surpassed
the critical early phase during which the mortality rate is high.

• ki,2: age at which it starts to be fertile.

• ki,3: age at which it stops being fertile.

• ki,4: average life expectancy.

• ki,5: fertility ratio (number of descendants by fertile female).

• ki,6: population growth.

• ki,7: mortality ratio in first years (age < ki,1) in which biomass in the form of
bones is not left on the field.

• ki,8: mortality ratio in first years (age < ki,1) in which biomass in the form of
bones is left on the field.

• ki,9: mortality ratio in adult animals (age ≥ ki,1) in which biomass in the form of
bones is not left on the field.

• ki,10: mortality ratio in adults animals (age ≥ ki,1) in which biomass in the form
of bones is left on the field.

• ki,11 is equal to 1 if the animal dies at the age ofki,4 leaving biomass, and it is
equal to 0 if the animal dies at the age ofki,4 without leaving bones.

104 Modelling Ecosystems using P Systems: The Bearded Vulture, a case study

• ki,12: amount of bones from young animals (age < ki,1).

• ki,13: amount of bones from adult animals (age ≥ ki,1).

• ki,14: percentage of females in the population.

• ki,15: amount of food necessary per year and breeding pair (1 unit is equal 0.5 kg
of bones).

• ki,16: it is equal to 0 when the species go through a natural growth (animals which
remain in the same territory throughout their lives) and it is equal to 1 when animals
are nomadic (the Bearded Vulture moves from one place to another until it is 6–7
years old, when it settles down).

Besides, values for each species are shown in Table 6.4 (see Appendix). Most values
in that table are equal to those in Table 6.2 (see Appendix), but it is necessary to make
a remark on valuesk4,10 andk1,15. Valuek4,10 is obtained by adding 6% of natural
mortality to 30% of animals killed by hunters. Valuek1,15 is 67% of 682 units (341 · 2)
which is the feeding the Bearded Vulture obtains from the other five species of ungulates
modellized in the ecosystem.

The P system designed implements a four–stage–running. Thefirst one is devoted to
the reproduction of the diverse species in the ecosystem. Then, the animals mortality is
analyzed according to different criteria. The third stage analyzes the amount of food in
the ecosystem. In the last stage, the removal of animals because of a lack of food takes
place. These stages are depicted in Figure 2.

Fig. 2. Structure of the P system running

4 A Simulator

In order to study the dynamics of the species that belong to the ecosystem, we have
designed a simulator written inC + + language. This program runs on a PC.

In the simulation, the objects that encode the species and the age are represented by two
vectors which are related through the number assigned to each animal of the ecosystem.
The objects of the P system evolve in a random way; this stochasticity is implemented by
generating random numbers between 1 and 100, according to anuniform distribution.
One of the generated numbers is assigned to each animal. Then, the animal evolves
according to the assigned number and the constant probability. For example, when the
probability of surviving is 70%, the animal will die if the assigned number is higher
than 70.

The input of the program consists of the parameters of each species that are considered
in the P system and the number of animals of each species and age that are present
at time zero. The output is the number and age of animals of each species that are
present every year after completing the following processes: reproduction, mortality
and feeding.

Modelling Ecosystems using P Systems: The Bearded Vulture, a case study 105

Fig. 3.2 Schema of the P system

In nature, an ecosystem is governed by nondeterminism, and this implies a complex
mathematical model. Nevertheless, all the processes that are carried out have an impor-
tant degree of randomness. This randomness can be predictedand can be quantified at
every moment and situation of the ecosystem.

The program has been structured in four modules which correspond to each of the stages
in which the P system is implemented.

• Reproduction. The inputs are the age at which each species begins to be fertile, the
age at which it stops being fertile, the fertility rate, and the proportion of females
of the species. This module also requires the total number ofexisting animals and
the distribution of these animals in terms of species and ages. The output of this
module is the number and age of animals of each species.
The population growth of the Bearded Vulture is not obtainedfrom the natural
reproduction of the animals in the ecosystem but it depends on the floating popu-
lation and the environment.
The annual growth ratio has been obtained by R. Heredia [11] in a experimental
way. So that, another input of this module is the growth percentage with respect to
the total population, and the output (as in the case of animals natural reproduction)
is the number of animals at each age.

106 Modelling Ecosystems using P Systems: The Bearded Vulture, a case study

• Mortality. The inputs are the mortality rate based on the age, the average life ex-
pectancy of each species, and finally the weight of bones leftby the dead animal
which is dependent on its age. Once again, this module also requires the total
number of animals and their distribution in terms of speciesand ages. As with
the other modules, the output of this module is the number andage of animals of
each species when the process is completed. Another output of this module is the
amount of food that is generated in terms of the weight of bones produced that
provide the Bearded Vulture’s basic source of nourishment.

• Feeding. The inputs are the amount of food available in the ecosystemand the
annual amount of food that is necessary for the animal to survive under suitable
conditions, in other words, conditions under which the animals are not debilitated
and do not suffer the consequent effects on their capabilities. As was seen in the
previous modules, inputs are generated by the P system itself as it quantifies objects
representing the number of animals of each existing speciesand age. Once again,
the output of this module is the number and age of animals of each species.

• Elimination of unused leftover food and the animal mortality from insufficient
feeding. The input of this module is part of output of the feeding module. The
aim of this process is to eliminate the number of animals thatwere not able to find
the necessary amount of food for their survival, and also to consider the amount of
leftover food that is degraded with time and that therefore stops having a role in the
model. The animals that die due to a lack of food are transformed into bones that
can then be eaten by the Bearded Vulture. The output of this module is an amount
of food in form of bones that is available to the Bearded Vulture.

The unit of reference used in this study is the year, that is, the food consumed throughout
an annual period is given at one single point in time, and withone application of each
rule. The mortality of animals in an ecosystem is also a process that is carried out in
a continuous way, throughout the year. However, reproduction is an activity that takes
place at a specific time of the year, and moreover, it takes place at the same time for
all of the species considered in this study. It will be necessary to verify if the one year
unit of time chosen is correct or whether a shorter unit of time should be used in the
P system. It is also necessary to check the robustness of the proposed model and to do
this, it is run a second time with a modified order of application of the four processes
modules. Given independence of the four modules that form the P system, it would be
a simple exercise to run probability experiments with each module.

5 Results and Discussion

We have run our simulations using a program written in C++ language incorporating a
specification of our model. We have considered the year as unit of time, so it has been
necessary to discretize feeding and mortality variables.

Modelling Ecosystems using P Systems: The Bearded Vulture, a case study 107

As shown in Table 6.1 (see Appendix), data about the current number of animals in
the Catalan Pyrenees do not specify the ages of animals. An age distribution has been
estimated considering the different constants that affectthe animals throughout their
life. These constants are fertility rate, mortality rate and percentage of females in the
population. We have obtained two estimations, one for the year 1994 which has been
used for the experimental validation, shown in Table 6.5 (see Appendix), and another
for the year 2008 which has been used for study the robustnessof the P system, shown
in Table 6.6 (see Appendix).

5.2 Robustness First, we have studied the robustness of our P system model with
respect to some parameters.

According to the design of the P system, reproduction rules have a higher priority than
mortality ones. Then, the robustness of the model regardingthe change of that priority
is analyzed. For that reason, two variants of the simulator have been studied changing
the order of the corresponding modules. This fact can be implemented in the P system
by changing variableX by variableY in the initial multisetM1.

In both cases, the simulator was ran 10 times until it covereda period of 20 years, being
the input the number of animals in 2008.

In Figure 3, solid lines and dashes lines represent the population dynamics when the
simulator modules are applied following theordersreproduction–mortality–feedingand
mortality–feeding–reproduction, respectively. Taking into account that the P system be-
haviour is similar in both cases, it can be deduced that our model is robust with regard
to the properties considered.

5.3 Experimental Validation Let us suppose that we are studying a phenomenon of
which we have (enough amount of) data experimentally obtained (at laboratory, through
field–work, etc.) from some prefixed conditions. Let us suppose that we design a com-
putational device trying to capture the most relevant factsof it, and we have a program
which allows us to run simulations. We can say the model is experimentally validated if
the results obtained with the simulator (from initial configurations corresponding to the
prefixed conditions) are in agreement with the experimentaldata.

Bearing in mind that Table 6.1 (see Appendix) shows those data experimentally obtained
corresponding to the years from 1994 to 2008, (being the input the number of animals in
1994) until it covered a period of 14 years. We have run our simulator 10 times, because
it supposes a reduction of70% of the deviation.

Table 6.7 (see Appendix) and Figure 4 show the difference between the average number
of animals species obtained with the simulator compared with the censures estimate for
2008. In 2004, the Pyrenean Chamois species was affected by adisease which made the
number of animals decrease to 10000. In the third column of that table, the evolution of

108 Modelling Ecosystems using P Systems: The Bearded Vulture, a case study

Fig. 5.3 Robustness of the ecosystem

the P system is shown without taking into account this piece of information, while in
the fourth column it has been considered.

The P system proposed can be taken as a good model to study the evolution of an
ecosystem. Variations noticed among the available data about the number of animals
of each species from 1994 to 2008 (see Table 6.1) (see Appendix), are almost of no
importance if we take into account that these data are taken from estimated census and
they are never exact. Under the same conditions as starting point, the ecosystem has
a certain behaviour pattern as it evolves, showing variations inherent to probabilistic
systems.

The very important factor of population density was not considered in the model of
the ecosystem. In this sense, as has been documented in otherraptor species, density
dependence and environmental stochasticity are both potentially important processes
influencing population demography and long-term population grow [12]. For this rea-
son why the population of some of the species such as Roe Deer,Fallow Deer and
Chamois may grow in an exponential way reaching values whichcannot be obtained

Modelling Ecosystems using P Systems: The Bearded Vulture, a case study 109

Fig. 5.4 Average number of animals

in the ecosystem. It is well–known, for example, that when a population of Red Deer
reaches a level of 15000 animals, a regulation process starts that implies a drastic de-
crease of the population down to 1000 individuals. So that, if these factors are not taken
into account, it may not be suitable for the study of the ecosystem dynamics in the long
term.

Neither ungulates feeding nor the population density have been taken into account. This
implies an exponential growth of ungulate species which constitute the basic source
of feeding for the Bearded Vulture. Consequently, there is acontinuous growth in the
number of pairs of Bearded Vultures. According to some researches [14], the estimated
maximum number of pairs of Bearded Vultures within the area under study is about
fifty. Higher numbers of pairs would lead to competition among them and as subsequent
decrease in the population down to values which the ecosystem can accept.

6 Conclusions and Future Work

A probabilistic P System which models an ecosystem related with the Bearded Vulture,
that is located in the Catalan Pyrenees, has been presented.

By using this P System, it has been possible to study the dynamics of the ecosystem
modifying the framework in order to analyze how the ecosystem would evolve if differ-
ent biological factors were modified either by nature or through human intervention.

110 Modelling Ecosystems using P Systems: The Bearded Vulture, a case study

A simulator of the P System has been designed and the robustness of the model with
respect to the order of application of different kinds of rules, has been shown.

Since the P System does not consider levels of population density, an exponential growth
of populations of species is obtained. In a future work, thisfactor and other parameters
(i.e. the amount of food of the hervibores species, the climatic changes in the ecosystem,
etc.) should be considered.

In order to obtain a model which allow us to study the evolution of an ecosystem in
the long term, it is necessary to take into account certain biological factors such as the
following:

• Maximum population density for each species.

• Available feeding in the area on which the ungulates may feed.

• Amount of food daily eaten by each of the ungulate species regarding their age.

Moreover, under adequate environmental conditions, the especies has a certain be-
haviour so that some values of the biological parameters canbe accepted. When es-
sential environmental conditions such as temperature and rainfall are not the adequate
ones, biological constants change as a reaction to the environment. It can be accepted
a model based on Markov chains in order to model temperature and rainfall. P systems
modelling Markov chains were previously presented in [5] and they should be consid-
ered in order to improve some results.

Acknowledgements. M.J. Pérez-Jiménez wishes to acknowledge the support of the
project TIN2006-13425 of the Ministerio de Educación y Ciencia of Spain, co–financed
by FEDER funds, and of the Project of Excelence TIC 581 of the Junta de Andalucia.

Financial support for A.Margalida was obtained from the Departament de Medi Ambi-
ent i Habitatge of Generalitat de Catalunya.

Bibliography

[1] R.J. Antor, A. Margalida, H. Frey, R. Heredia,L. Lorente, J.A. Ses. Age of first
breeding in wild and captive populations of Bearded Vultures (Gypaetus barbatus).
Acta Ornithologica, 42 (2007), 114–118.

[2] M. Begon, J.L. Harper, C.R. Townsend.Ecology: Individuals, Populations and
Communities. Blackwell Scientific Publications Inc., Oxford, UK, 1988.

[3] F. Braza, C. San Jos, A. Blom, V. Cases, J. E. Garca. Population parameters of
fallow deer at Doana National Park (SW Spain).Acta Theriol, 35 (1990), 277–288

[4] C.J.Brown. Population dynamics of the bearded vulture Gypaetus barbatus in south-
ern Africa.African Journal of Ecology, 35 (1997), 53–63.

Modelling Ecosystems using P Systems: The Bearded Vulture, a case study 111

[5] M. Cardona, M.A. Colomer, M.J. Prez-jimnez, A. Zaragoza. Handling Markov
chains with membrane computing.Lecture Notes in Computer Science, 4135(2006),
72–85.

[6] C. Chocarro, R. Fanlo, F. Fillat, P. Marn. Historical Evolution of Natural Resource
Use in the Central Pyrenees of Spain.Mountain Research And Development, 10
(1990), 257–265.

[7] T. Clutton-Brock, F. E. Guinness, S. D. Albon.Red deer: Behavior and Ecology
of Two Sexes. Edinburgh University Press, Edinburgh, 1982.

[8] R. Garca-Gonzlez, J. Herrero, R. Hidalgo. Estimacin puntual de diversos parmet-
ros poblacionales y distributivos del sarrio en el Pirineo Occidental.Pirineos, 35
(1985), 53–63.

[9] I. Garin, J. Herrero. Distribution, abundance and demographic parameters of the
Pyrenean Chamois (Rupicapra p. pyrenaica) in Navarre, Western Pyreness.Mam-
malia, 61 (1997), 55–63.

[10] P. H. Harvey, A. Purvis. Understanding the ecological and evolutionary reasons for
life history variation: mammals as a case study. In McGlade J(ed)Advanced eco-
logical theory: principles and applications. Blackwell Science Publications, Ox-
ford, 1999, pp. 232–247.

[11] R. Heredia. Status y distribucin del quebrantahuesos en Espaa y diagnstico de la
situacin de la poblacin en la UE. In A. Margalida and R. Heredia, eds.Biologa de la
conservacin del quebrantahuesos Gypaetus barbatus en Espaa. Madrid: Organismo
Autnomo Parques Nacionales, 2005.

[12] O. Krger. Long-term demographic analysis in goshawkAccipiter gentilis: the role
of density dependence and stochasticity.Oecologia, 152, (2008): 459–471.

[13] R. Margalef.Ecologa. Universidad Nacional de Educacin a Distancia, Madrid,
1977.

[14] A. Margalida, J.A. Donzar, J. Bustamante, F.J. Hernndez, M. Romero-Pujante.
Application of a predictive model to detect long-term changes in nest-site selection
in the Bearded Vulture Gypaetus barbatus : conservation in relation to territory
shrinkage.Ibis, 150, (2008), 242–249.

[15] A. Margalida, D. Garca, A. Corts-Avizanda. Factors influencing the breeding den-
sity of Bearded Vultures, Egyptian Vultures and Eurasian Griffon Vultures in Cat-
alonia (NE Spain): management implications.Animal Biodiversity and Conserva-
tion, 30, 2 (2007), 189–200.

[16] A. Margalida, S. Maosa, J. Bertran, D. Garca. Biases in Studying the Diet of the
Bearded Vulture.The Journal of Wildlife Management, 71, 5 (2006), 1621–1625.

[17] A. Margalida, J. Bertran, J. Boudet. Assessing the dietof nestling Bearded Vul-
tures: a comparison between direct observation methods,Journal of Field Or-
nithology, 76, 1 (2005), 40–45.

[18] A. Margalida, J. Bertran, J. Boudet, R. Heredia. Hatching asynchrony, sibling ag-
gression and cannibalism in the Bearded Vulture (Gypaetus barbatus). Ibis, 146
(2004), 386–393.

[19] A. Margalida, D. Garca, J. Bertran, R. Heredia. Breeding biology and success of
the Bearded Vulture Gypaetus barbatus in the eastern Pyrenees.Ibis, 145 (2003),

112 Modelling Ecosystems using P Systems: The Bearded Vulture, a case study

244–252.
[20] P. Mateos-Quesada, J. Carranza. Reproductive patterns of roe deer in central Spain.

Etologa, 8 (2000), 9–12.
[21] H. McCallum.Population parameters: estimation for ecological models, Black-

well Science Publications, Oxford, 2000.
[22] Gh. Păun, Computing with membranes.Journal of Computer and System Sci-

ences, 61, 1 (2000), 108–143, andTurku Center for Computer Science-TUCS Re-
portNr. 208, 1998.

[23] C. Sunyer. El periodo de emancipacin en el Quebrantahuesos: consideraciones so-
bre su conservacin. In R. Heredia, B. Heredia, (Eds.)El Quebrantahuesos (Gypae-
tus barbatus) en los PirineosColeccin Tcnica. Madrid: ICONA, 1991, pp. 47–65.

[24] D. Tilman.Resource Competition and Community Structure. Princeton University
Press, Princeton, New Jersey, 1982.

[25] R. Torres.Conservacin de recursos genticos ovinos en la raza Xisqueta: caracter-
izacin estructural, racial y gestin de la diversidad en programas ”in situ”. Ph D
Thesis. Universitat Autnoma de Barcelona, Barcelona, 2006.

[26] A. Watson.Animal Populations in Relation to Their Food Resources. Blackwell
Scientific Publications, Oxford, 1970.

Appendix

Table 6.1 Number of animals in the Catalan Pyrenees

Specie 1994 2008

Bearded Vulture pairs 20 37

Pyrenean Chamois 9000 12000

Red deer 1000 5500

Fallow deer 600 1500

Roe deer 1000 10000

Sheep 15000 200000

Table 6.2 Natural constants used in the model

Species I1 I2 I3 I4 I5 I6 I7 I8

Bearded Vulture 1 8 20 21 38 6 12 50

Pyrenean Chamois 1 2 18 18 75 60 6 55

Red Deer 1 2 17 17-20 75 34 6 50

Fallow Deer 1 2 12 12 55 50 6 75

Roe Deer 1 1 10 10 100 58 6 67

Sheep 1 2 8 8 75 15 3 96

Table 6.3 Descriptive variables used to model the ecosystem

Specie Weigh Weigh Percentage Average Biomass: Biomass: Kg accessible

Male Female Female weigh bone adult bone young by B. Vulture

kg kg kg kg kg (adult/young)

Bearded Vulture 5 6.5 60 5.75 - - -

Chamois 28 32 50 30 6 3 6/3

Red Deer Female - 75 - 75 15 7.5 15/7.5

Red Deer Male 120 - - 120 24 12 24/12

Fallow Deer 63 42 80 46 9 4.5 2/1

Roe Deer 27 23 66 24 5 2.5 1/0.5

Sheep 42 35 97 35.2 7 3.5 7/3.5

Table 6.4 Constants used in the P system based model

Specie i ki,1 ki,2 ki,3 ki,4 ki,5 ki,6 ki,7 ki,8 ki,9 ki,10 ki,11 ki,12 ki,13 ki,14 ki,15 ki,16

Bearded Vulture 1 1 8 20 21 - 4 6 0 12 0 0 0 0 50 460 1

Pyrenean Chamois 2 1 2 18 18 75 - 0 60 0 6 1 6 12 55 - 0

Red Deer Female 3 1 2 17 17 75 - 0 34 0 6 1 15 30 100 - 0

Red Deer Male 4 1 2 - 20 - - 0 34 0 36 1 24 48 0 - 0

Fallow Deer 5 1 2 12 12 55 - 0 50 0 6 1 2 4 75 - 0

Roe Deer 6 1 1 10 10 100 - 0 58 0 6 1 1 2 67 - 0

Sheep 7 1 2 8 8 75 - 57 15 0 3 0 7 14 96 - 0

Table 6.5 Estimation of number of animals per age in 1994

Age Bearded Vulture Chamois Red deer female Red deer male Fallow deer Roe deer Sheep

1 0 741 167 58 83 121 20832

2 0 740 133 44 73 121 20208

3 0 668 107 35 69 121 19601

4 0 667 85 28 63 121 19014

5 0 667 68 23 59 109 18443

6 0 596 41 14 55 108 17890

7 0 594 33 11 51 108 17353

8 2 518 26 9 47 96 16659

9 2 517 21 7 35 96 0

10 2 444 17 5 33 0 0

11 2 444 13 5 30 0 0

12 2 444 11 4 0 0 0

13 2 373 9 3 0 0 0

14 1 373 7 2 0 0 0

15 1 372 5 2 0 0 0

16 1 296 4 1 0 0 0

17 1 296 3 1 0 0 0

18 1 252 0 0 0 0 0

19 1 0 0 0 0 0 0

20 1 0 0 0 0 0 0

21 1 0 0 0 0 0 0

Table 6.6 Estimation of number of animals per age in 2008

Age Bearded Vulture Chamois Red deer female Red deer male Fallow deer Roe deer Sheep

1 0 988 978 254 125 1210 27776

2 0 987 780 192 110 1207 26944

3 0 890 625 154 103 1207 26135

4 0 889 500 124 95 1207 25352

5 0 889 400 99 89 1085 24591

6 0 795 240 60 83 1083 23854

7 0 792 195 48 77 1083 23137

8 6 690 155 38 71 959 22212

9 6 689 123 30 52 959 0

10 6 592 97 24 50 0 0

11 6 592 78 20 45 0 0

12 5 592 62 16 0 0 0

13 5 497 50 12 0 0 0

14 5 497 40 10 0 0 0

15 5 496 32 8 0 0 0

16 5 395 25 6 0 0 0

17 5 394 20 5 0 0 0

18 5 336 0 0 0 0 0

19 5 0 0 0 0 0 0

20 5 0 0 0 0 0 0

21 5 0 0 0 0 0 0

Table 6.7 Number of animals produced by the simulator

Year Bearded Vulture Pyrenean Chamois Pyrenean Chamois Red deer Fallow deer Roe Deer Sheep

1994 20 9000 1000 600 1000 150000

1995 21 9541 1115 667 1213 152074

1996 21 10023 1263 710 1371 153951

1997 22 10590 1432 758 1568 156183

1998 23 11121 1617 808 1812 158571

1999 24 11718 1834 859 2106 161318

2000 25 12366 2087 908 2469 164391

2001 27 13032 2368 967 2906 167914

2002 28 13767 2705 1032 3459 171940

2003 29 14597 3067 1111 4132 174713

2004 31 15488 10000 3470 1202 4969 177973

2005 33 16468 10594 3917 1297 5883 181300

2006 35 17508 11133 4437 1399 6974 184790

2007 36 18647 11709 5004 1495 8272 188357

2008 38 19866 12297 5631 1602 9774 192097

MetaPlab: A Computational Framework for
Metabolic P Systems

———————————————
Alberto Castellini, Vincenzo Manca

Verona University, Computer Science Department,
Strada LeGrazie 15, 37134 Verona, Italy.
{alberto.castellini, vincenzo.manca }@univr.it

In this work the formalism of Metabolic P systems has been employed as a
basis of a new computational plugin-based framework for modeling biologi-
cal networks. This software architecture supports MP systems dynamics in a
virtual laboratory, called MetaPlab. The Java implementation of the software
is outlined and a specific plugin at work is described to highlight the internal
functioning of the entire architecture.

1 Introduction

Systems biology copes with the quantitative analysis of biological systems by means of
computational and mathematical models which assist biologists in developing experi-
ments and testing hypothesis for complex systems understanding [12,26]. On the other
hand, new mathematical and computational techniques have been conceived to infer
coherent theories and models from the huge amount of available data.

P systemswere introduced by Gh. Păun in [23] as a new computational model in-
spired by the structure and functioning of the living cell. This approach is rooted in
the context of formal language theory and it is essentially based onmultisetrewriting
andmembranes. In the P systems theory many computational universality results have
been achieved [24]. P systems seem especially apt to model biological systems, how-
ever their original mathematical setting was too abstract for expressing real biological
phenomena.

Metabolic P systems, namelyMP systems, are a class of P systems proved to be signif-
icant and successful for modeling biological phenomena related to metabolism (matter
transformation, assimilation and expulsion in living organisms). They were conceived
in [19] and subsequently extended in many works [4,5,15–18]. MP system dynamics is
computed by a deterministic algorithm based on themass partition principlewhich de-
fines the transformation rate of object populations, according to a suitable generalization
of chemical laws. This kind of rewriting-based and bio-inspired modeling overcomes
some drawbacks of traditional Ordinary Differential Equations (ODE) allowing a new

118 MetaPlab: A Computational Framework for Metabolic P Systems

insight about biological processes, which cannot be achieved by using the “glasses” of
classical mathematics [2].

Equivalence results have been proved, in [9] and [7, 8], between MP systems and, re-
spectively, autonomous ODE and Hybrid Functional Petri nets. The dynamics of several
biological processes has been effectively modeled by meansof MP systems, among
them: the Belousov-Zhabotinsky reaction (in the Brusselator formulation) [4, 5], the
Lotka-Volterra dynamics [4, 19], the SIR (Susceptible-Infected-Recovered) epidemic
[4], the Protein Kinase C activation [5], the circadian rhythms, the mitotic cycles in
early amphibian embryos [18], a Pseudomonas quorum sensingmodel [1,6] and thelac
operon gene regulatory mechanism in glycolytic pathway [7]. In order to simulate MP
systems we developed a Java computational tool calledMPsim[3]. The current release
of the software, available at [10], is based on the theoretical framework described above,
and it enables the graphical definition of MP models, their simulation and plotting of
dynamics curves.

Recent work aims at deducing MP models, for given metabolic processes, from a suit-
able macroscopic observation of their behaviors along a certain number of steps. Indeed,
the search of efficient and systematic methods to define MP systems from experimental
data is a crucial point for their use in complex systems modeling. The solution of this
reverse-engineeringtask is supported, into the MP systems framework, by theLog-gain
theory [14, 15] which roots in allomeric principle [27]. Themain result of this theory
is the possibility of computingreaction fluxesat each step by solving a suitable lin-
ear equations system which combine stoichiometric information with other regulation
constraints (by means of a sophisticated method for squaring and making univocally
solvable the systems). This means that the knowledge of substances and parameters
at each step provides the evaluation of reaction fluxes at that step. In this way, time-
series of system states generate corresponding flux series,and from them, by standard
regression techniques, the final regulation maps are deduced. This approach turned to
be very effective in many cases and recently [20] it provideda model of a photosyntesis
phenomenon, deduced by experimental time-series.

What seems to be peculiar of Log-gain theory is the strong connection with biological
phenomena and its deep correlation with the allomeric principle, a typical concept of
systems biology. Other general standard heuristics or evolutive techniques, already em-
ployed to estimate model structures and parameters [25], could be usefully combined
with Log-gain method, in fact, the biological inspiration of this theory could add partic-
ular specificity to the wide spectrum potentiality of heuristics/evolutionary techniques
by imposing constraints able to orientate the search of required solutions.

In this work, we propose a new plugin-based architecture that transforms the software
MPsim from a simple simulator to a propervirtual laboratory which will be called
MetaPlab. It assists biologists to understand internal mechanisms of biological systems
and to forecast, in silico, their response to external stimuli, environmental condition
alterations and structural changes. The Java implementation of MetaPlab ensures the

MetaPlab: A Computational Framework for Metabolic P Systems 119

cross-platform portability of the software, which will be released under the GPL open-
source license.

Several tools for modeling biological pathways are alreadyavailable on-line. The most
of them are based on ODE, such asCOPASI[11], which enables to simulate biochem-
ical networks and to estimate ODE parameters. It is a very powerful tool but its us-
age requires a deep knowledge of molecular kinetics, because the involved differential
equations have an intrinsically microscopic nature. Petrinets have been employed by
Cell IllustratorTM [22], a software which graphically represents biological pathways
by graphs and computes their temporal dynamics by a specific evolution algorithm [8].
Unfortunately, this tool can be used just to simulate biological behaviors, but it does not
provide any support for the parameter estimation and the analysis of models. The new
computational framework we propose in the following, instead, is based on an extensi-
ble set of plugins, namely Java tools for solving specific tasks relevant in the framework
of MP systems, such as parameter estimation for regulative mechanisms of biological
networks, simulation, visualization, graphical and statistical curve analysis, importation
of biological networks from on-line databases, and possibly other aspects which would
result to be relevant for further investigations.

In Section 2 we introduce some basic principles of MP systemsand MP graphs, and we
discuss a few biological problems which can be tackled by this modeling framework.
Section 3 describes the new plugin-based architecture for asystematic management of
these problems, and finally, a plugin for computing MP systems dynamics is presented
in Section 4 with a complete description of its functioning.

2 MP systems: model and visualization

MP systems are deterministic P systems developed to model dynamics of biological
phenomena related to metabolism. The notion of MP system we consider here general-
izes the one given in [15,18].

Definition 1. (MP system) An MP system is a discrete dynamical system specified by
a construct [14]:

M = (X, R, V, Q, Φ, ν, µ, τ, q0, δ)

whereX , R, V are finite sets of cardinalityn, m, k ∈ N (the natural numbers) respec-
tively.

1. X = {x1, x2, . . . , xn} is a set ofsubstances(the types of molecules);
2. R = {r1, r2, . . . , rm} is a set ofreactionsoverX . A reactionr is represented in

the arrow notation by a rewriting ruleαr → βr with αr, βr strings overX . The
stoichiometric matrixA stores reactions stoichiometry, that is,A = (Ax,r | x ∈
X, r ∈ R) whereAx,r = |βr|x − |αr|x, and|γ|x is the number of occurrences of
the symbolx in the stringγ;

120 MetaPlab: A Computational Framework for Metabolic P Systems

3. V = {v1, v2, . . . , vk} is a set ofparameters(such as pressure, temperature, vol-
ume, pH, ...) equipped with a set{hv : N → R | v ∈ V } of parameter evolution
functions, where, for anyi ∈ N, hv(i) ∈ R (the real numbers) is the value of
parameterv at the stepi;

4. Q is the set ofstates, seen as functionsq : X ∪ V → R from substances and
parameters to real numbers. A general stateq can be identified as the vector
q = (q(x1), . . . , q(xn), q(v1), . . . , q(vk)) of the values whichq associates to the
elements ofX ∪ V . We denote byq|X the restriction ofq to the substances, and by
q|V its restriction to the parameters;

5. Φ = {ϕr : Q→ R | r ∈ R} is a set offlux regulation maps, where for anyq ∈ Q,
ϕr(q) states the amount (moles) which is consumed/produced, in the stateq, for
every occurrence of a reactant/product ofr. We defineU(q) = (ϕr(q) | r ∈ R)
theflux vectorat stateq;

6. ν is a natural number which specifies the number of molecules ofa (conventional)
mole ofM , as itspopulation unit;

7. µ is a function which assigns to eachx ∈ X , themassµ(x) of a mole ofx (with
respect to some measure unit);

8. τ is thetemporal intervalbetween two consecutive observation steps;
9. q0 ∈ Q is theinitial state;

10. δ : N → Q is thedynamicsof the system. It can be identified as the vectorδ =
(δ(0), δ(1), δ(2), . . .), whereδ(0) = q0, andδ(i) = (δ(i)|X , δ(i)|V) is computed
by the following autonomous first order difference equations:

δ(i + 1)|X = A× U(δ(i)) + δ(i)|X (28)

δ(i + 1)|V = (hv(i + 1) | v ∈ V) (29)

whereA is the stoichiometric matrix ofR overX , of dimensionn ×m, while×,
+ are the usual matrix product and vector sum. We introduce thesymbolδ<i to
identify the finite vector(δ(0), δ(1), . . . , δ(i)).

MP graphs, introduced in [18], are a natural representation of MP systems modeling
biochemical reactions as bipartite graphs with two levels,in which the first level de-
scribes thestoichiometryof reactions, while the second level expresses theregulation,
which tunes the flux of every reaction (i.e., the quantity of chemicals transformed at
each step) depending on the state of the system (see for example Figure 2.1).

Given a metabolic process, some elements of a related MP system can be generally
defined from a macroscopic observation of the system, while other elements should be
computed by means of suitable mathematical techniques. Forinstance, if we deduce by
experimental observations the set of substances (X , item 1 of Definition 1), the chemo-
physical parameters (V , item 3) and the reactions (R, item 2) involved in the biological
process, and if we know the mathematical laws which regulatethese reactions (Φ, item
5), then the system dynamics (δ, item 10) can be computed by the equations (28) and
(29).

MetaPlab: A Computational Framework for Metabolic P Systems 121

The dynamics computationtask, just defined, is only one of several biologically in-
spired mathematical problems which can be tackled by MP systems. Table 2.1 collects
a few of these tasks focusing on the known and the unknown elements of the related MP
system. The second problem we propose is theflux discovery, which entails the compu-
tation of flux time-seriesU(δ(0)), . . . , U(δ(i−1)) that yield an observed dynamicsδ<i

of substances and parameters. A mathematical theory for solving this problem, called
Log-gain theory, has been proposed in [14, 15], and some computational tools based
on it are currently under construction. A third task is related toregulation discovery. It
is a regression problem which aims at computing functionsΦ which better interpolate
a (known) flux time-seriesU(δ(0)), . . . , U(δ(i)). They could be calculated by tradi-
tional regression methods [20] as well as by evolutionary computing techniques, such
as genetic programming [13] and neural networks [21].

Problem Known elements Unknown elements

Dynamics computation X, R, V, Φ, q0 δ

Fluxes discovery X, R, V, U(δ(0)), δ<i U(δ(1)), . . . , U(δ(i− 1))

Regulation discovery R, U(δ(0)), . . . , U(δ(i)), δ<i Φ

Dynamics analysis X, R, V, δ<i Statistical params, etc.

Table 2.1 Some biologically inspired problems which can be tackled within the MP systems
framework. Unknown elements should be computed from known elements by means of suitable
mathematical techniques and computational tools.

The last problem listed in Table 2.1 concerns thedynamics analysis, a data-mining task
which involves the discovery of new biological informationfrom observed dynamics. It
is related to the discovery of statistical parameters (e.g., dynamics and flux correlations),
the clustering of observed time-series to detect the main actors of a biological system,
and the analysis of the dynamical behaviors occurring from different (environmental
and structural) conditions.

Of course, it could be very useful to systematically attack these and further bio-inspired
problems by means of a set of computational tools suitably developed to satisfy biolo-
gists’ needs. The software architecture proposed in the next section answers this request
by supporting an extendable set of plugins, each dedicated to a specific task.

122 MetaPlab: A Computational Framework for Metabolic P Systems

Fig. 2.1 An MP graph visualized by a graphical user interface of MetaPlab. Frame labels point
out MP system elements in the MP graph representation. Substances, reactions and parameters
describe the system stoichiometry, while fluxes express thesystem regulation.

3 A new plugin-based framework for processing MP systems

Here, we propose a computational structure which enables MetaPlab to systematically
tackle the problems introduced in Table 2.1. Figure 3.2 depicts this framework, which
involves four main layers: the first deals with the model definition and visualization by
MP graphs, the second is dedicated to the representation and storing of MP systems by
a suitable data structure calledMP store, the third concerns with the processing of these
data by means of computational units calledMP plugins, and finally, the fourth arranges
a set ofvistaswhich support the MP systems analysis.

MetaPlab employs this framework to extend the functionalities and to improve the per-
formances of MPsim 3, which only coped with the MP systems simulation. The new
extendable data processing layer, described below, turns MetaPlab to be a proper “vir-
tual laboratory” wherein MP plugins act as virtual tools forprocessing MP systems. In
the following we show some implementation details of the newsoftware architecture
depicted in Figure 3.2. A technical description of the wholearchitecture will be pub-
lished soon in the MetaPlab User Guide [28].

MP graphs. The leftmost layer of Figure 3.2 contains the MetaPlab inputGUI, also

MetaPlab: A Computational Framework for Metabolic P Systems 123

Fig. 3.2 The MetaPlab framework.

depicted in Figure 2.1. It is an easy-to-use graphical user interface which takes MP sys-
tems as inputs and visualizes them by means of MP graphs. The user drags MP graph
elements from the right toolbar of Figure 2.1 to the central white panel. He or she spec-
ifies their internal parameters by filling in suitable fields,and connects the nodes by
drawing arcs between them. Importation of observed time-series related to substances,
parameters and fluxes dynamics is supported and a “network-oriented” visualization of
MP system dynamics is provided by pop-up windows attached toeach node. MP graphs
loaded by this GUI are stored into MP store objects, which aredefined below.

MP storedata structure. The second layer of Figure 3.2 consists of an object-oriented
data structure calledMP store. It has been designed to store all the elements of an MP
system by suitable Java objects. Eachsubstancex ∈ X is mapped to an object which
stores the substance namex, its molar weightµ(x) and the time-series of its dynamics
((δ(i))(x) | i ∈ N). Eachparameterv ∈ V is implemented by an object having two
main fields, the first stores the regulation functionhv as a string, while the second holds
the time-series of its dynamics((δ(i))(v) | i ∈ N) as a vector of real numbers.Flux
objects are very similar to parameters, in fact each flux stores the regulation function
ϕr of a reactionr by a string field, and the related flux time-series(ϕr(δ(i)) | i ∈ N)
by a vector. Finally, eachreactionobject implements a reaction ruler ∈ R by a vector

124 MetaPlab: A Computational Framework for Metabolic P Systems

of pointers that address the substances objects involved inr. Each pointer from a reac-
tion r to a substancex has a related multiplicity field which stores the valueAx,r of
the stoichiometric matrix. MP store is a crucial point of thenew software architecture.
Indeed, being the standard input of every plugin, it acts as abridge between theMP
graph visualizationand thedata processinglayer described in the following.

Data processing.The third layer of Figure 3.2 represents the core of the new archi-
tecture, in fact, it concerns with a plugin-based module coping with the MP systems
data processing. This layer is composed byi) an extendable set of Javaplugins, listed
on the right of the third layer, each equipped with specific input and (auxiliary) output
GUIs, andii) a Plugin Manager, depicted on the left of the third layer, which automat-
ically loads MP plugins and makes them available to be launched.MP pluginsare the
MetaPlab processing units. Each of them is involved in a specific computational task,
such as the dynamics computation of an MP system, the estimation of its regulation
functions, the analysis of its dynamics, or the importationof metabolic pathways from
databases. To accomplish one of these (or further) tasks, a plugin gets two possiblein-
puts: an MP store object, which addresses the model visualized bythe input GUI, and
a set of auxiliary data, coming from a plugin-specific input GUI (if the plugin provides
it). The pluginoutputs may be saved into one or more MP store objects or they can be
displayed by plugin-specific output GUIs (theMP vistasdescribed below).

A plugin can be implemented by one or more Java classes, having methods for accom-
plishing some basic functions, such as, to return the pluginname and its description,
to acquire the input, to perform the data processing, and to return the output. Further
Java methods manage the plugin synchronization with the rest of the application. Once
all the required methods have been implemented, the plugin is ready to be launched by
means of MetaPlab. In this way, the compiled (.jar) file of theplugin should be placed
into a specific folder, calledplugin directory, in order to be automatically recognized
and loaded by the Plugin Manager.

Figure 3.3 depicts thePlugin ManagerGUI which enables the user to choose plugins
from a list and to run them. Theupper sideof this window displays the available plu-
gins. Each of them can be launched by selecting the related entry in the list and by
clicking the underlyingRun button. If a plugin saves its output as an MP store data
structure, then further plugins can work on this output, getting it as an input. Whenever
a plugin computation stops, the Plugin Manager is displayed, in order to give the user
the chance to run another plugin. Thelower sideof the Plugin Manager is instead ded-
icated to deliver new plugins. In fact, due to the intrinsic open and easy structure, MP
plugins can be implemented, following a few simple rules, bywhoever wants to attack
a specific modeling problem by MP systems. From this perspective, the forthcoming
on-line repositories will enable the exchange of these computational tools among the
MetaPlab users, thus encouraging their reuse. When an on-line repository is selected by
the first text field, the subsequent text box automatically shows the list of plugins which
can be downloaded from the repository. Soon, a web site dedicated to MetaPlab [28]

MetaPlab: A Computational Framework for Metabolic P Systems 125

will support the download of new plugins and it will provide acomplete documentation
of the software.

Fig. 3.3 The MetaPlab Plugin Manager. In the upper side the user can run plugins by choosing
them from a list. The lower side allows the user to download new plugins from forthcoming
on-line repositories.

MP vistas. The fourth level concerns with other ways of representing MPstructures
and MP dynamics, which can support the analysis of specific aspects of the modeling
process. Some examples of these vistas are the jointly tracing of substances and param-
eters curves, the plotting of phase diagrams, and the visualization of statistical indexes.

Auxiliary modules. Two further modules are displayed in thebottom of Figure 3.2:
the MP store validatorand therepository manager. The first is a Java library which
assists plugin designers to check the MP store consistency.The second manages the
systematic storage and retrieval of the experiments related to a specific MP system.

4 A plugin for computing MP system dynamics

In this section we propose a plugin example to highlight the mechanisms underlying the
plugin-based framework described above. The plugin we propose is asimulatorwhich
computes the dynamics of an MP system by applying the recurrent equations (28) and
(29) of Definition 1. We remark that the plugin is simply a rearrangement of the stand-
alone software MPsim 3. The main difference between the stand-alone simulator and
the relative plugin version is that, the latter satisfies some structural requirements which

126 MetaPlab: A Computational Framework for Metabolic P Systems

allow it to be automatically loaded by the Plugin Manager, tocommunicate with the
MetaPlab input GUI and to exchange data with other plugins. All the details about
these simple requirements will be published in the forthcoming MetaPlab Developer
Guide [28].

Plugin functioning. At the beginning of the modeling process, we define an MP sys-
tem by dragging substance, parameter and reaction nodes from the right toolbar of the
input GUI (Figure 2.1). Then, we draw stoichiometric arcs, and we state both regulation
functions and initial conditions. For example, let us imagine to define an MP graph for a
typical metabolic process, as the mitotic oscillator already simulated by the stand-alone
tool in [3].

After this input stage we open the Plugin Manager (Figure 3.3) which lists all the avail-
able plugins. We select thedynamics computation toolby choosing the related entry
from the upper list, and we click theRunbutton, in order to start the plugin. The graph-
ical user interface depicted on the left side of Figure 4.4 appears on the screen. By this
window we state the number of steps to perform and then, we launch the dynamics com-
putation process by the start button. When the process finishes, the substance, parameter
and flux time-series, computed by the plugin, are automatically saved by an MP store
which updates the MP graph displayed by the input GUI. Furthermore, the dynamics is
plotted by the plugin output interface, depicted on the right of Figure 4.4, which shows
the typical mitotic oscillations.

We finally remark that the just computed dynamics can be processed again by further
plugins, as in a pipeline, because MP store objects preservethe format compatibility
among all these tools. From this perspective MetaPlab widely increases the computa-
tional power of MPsim.

Fig. 4.4 On the left:The input graphical user interface of the dynamics computation plugin.On
the right: the output graphical user interface of the dynamics computation plugin.

MetaPlab: A Computational Framework for Metabolic P Systems 127

5 Conclusions and future works

This work has shown that several problems related to the modeling of biological net-
works can be systematically tackled by means of a set of computational tools integrated
in a virtual laboratory, based on the MP systems theory.

The power of this laboratory tightly depends on the flexibility of the plugins architecture
and will increase as much as we collect new plugins enrichingthe basic functionalities
of our system. For example, at present we are almost ready to add a new plugin, based
on the Log-gain theory [14], which compute the fluxes of a given MP system, deduced
by a temporal series of observed states. We plan also to develop other plugins based
on traditional regression techniques, neural networks andgenetic programming, for ob-
taining flux maps from fluxes.

Other important functionalities of our virtual laboratorywill be topics of further ex-
tensions. In particular we want to mention:i) plugins which compute suitable statistic
coefficients and analyze the system stability when biological parameters change,ii)
plugins dedicated to the network importation from the main on-line databases (by the
SBML standard),iii) plugins able to map MP systems to other formalisms, such as ODE
or Petri Nets, and to visualize MP models by means of alternative vistas.

Bibliography

[1] F. Bernardini, M. Gheorghe, and N. Krasnogor. Quorum sensing P systems.The-
oretical Computer Science, 371(1-2):20–33, 2007.

[2] F. Bernardini and V. Manca. Dynamical aspects of P systems. BioSystems, 70:85–
93, 2003.

[3] L. Bianco and A. Castellini. Psim: a computational platform for Metabolic P
systems. InLNCS 4860, pages 1–20. Springer, 2007.

[4] L. Bianco, F. Fontana, G. Franco, and V. Manca. P systems for biological dy-
namics. In G. Ciobanu, G. Păun, and M. J. Pérez-Jiménez, editors,Applications
of Membrane Computing, Natural Computing Series, pages 81–126. Springer,
Berlin, 2006.

[5] L. Bianco, F. Fontana, and V. Manca. P systems with reaction maps.International
Journal of Foundations of Computer Science, 17(1):27–48, 2006.

[6] L. Bianco, D. Pescini, P. Siepmann, N. Krasnogor, F. J. Romero-Campero, and
M. Gheorghe. Towards a P systems pseudomonas quorum sensingmodel. In
LNCS 4361, pages 197–214. Springer, 2006.

[7] A. Castellini, G. Franco, and V. Manca. Toward a representation of Hybrid Func-
tional Petri Nets by MP systems. InProceedings of the 2nd International Work-
shop on Natural Computing, IWNC 2007, Nagoya University, Japan. Springer Ver-
lag Tokyo. To appear.

[8] A. Castellini, G. Franco, and V. Manca. Hybrid functional petri nets as MP sys-
tems. 2008. Submitted.

128 MetaPlab: A Computational Framework for Metabolic P Systems

[9] F. Fontana and V. Manca. Discrete solutions to differential equations by metabolic
P systems.Theoretical Computer Science, 372(2-3):165–182, 2007.

[10] Center for BioMedical Computing web site. Url: http://www.cbmc.it.
[11] S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus,M. Singhal, L. Xu,

P. Mendes, and U. Kummer. COPASI a COmplex PAthway SImulator. Bioinfor-
matics, 22(24):3067–3074, 2006.

[12] H. Kitano. Computational systems biology.Nature, 420, 2002.
[13] J.R. Koza, M.A. Keane, M.J. Streeter, W. Mydlowec, J. Yu, and G. Lanza.Ge-

netic Programming IV : Routine Human-Competitive Machine Intelligence (Ge-
netic Programming). Springer, 2003.

[14] V. Manca. Log-gain principles for Metabolic P systems.In G. Rozenberg
Festschrift. To appear.

[15] V. Manca. The Metabolic Algorithm: Principles and applications. Theoretical
Computer Science. http://dx.doi.org/10.1016/j.tcs.2008.04.015. In print.

[16] V. Manca. Metabolic P systems for biochemical dynamics. Progress in Natural
Sciences, 17(4):384–391, 2007.

[17] V. Manca. Discrete simulations of biochemical dynamics. In LNCS 4848, pages
231–235. Springer, 2008.

[18] V. Manca and L. Bianco. Biological networks in metabolic P systems.BioSystems,
91(3):489–498, 2008.

[19] V. Manca, L. Bianco, and F. Fontana. Evolutions and oscillations of P systems:
Applications to biochemical phenomena. InLNCS 3365, pages 63–84. Springer,
2005.

[20] V. Manca, R. Pagliarini, and S. Zorzan. Toward an MP model of Non Photochemi-
cal Quenching. InPre-Proceeding of the 9-th Workshop on Membrane Computing,
2008.

[21] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, editors. Machine learning, neural
and statistical classification. Ellis Horwood, Upper Saddle River, NJ, USA, 1994.

[22] M. Nagasaki, A. Doi, H. Matsuno, and S. Miyano. Genomic object net: I. A
platform for modelling and simulating biopathways.Applied Bioinformatics,
2(3):181–184, 2004.

[23] G. Păun. Computing with membranes.Journal of Computer and System Sciences,
61(1):108–143, 2000.

[24] G. Păun.Membrane Computing. An Introduction. Springer, Berlin, 2002.
[25] F. J. Romero-Campero, H. Cao, M. Camera, and N. Krasnogor. Structure and pa-

rameter estimation for cell systems biology models. InProceedings of the Genetic
and Evolutionary Computation Conference, GECCO-2008. ACM Publisher, 2008.
To appear.

[26] E. Voit, A. R. Neves, and H. Santos. The intricate side ofsystems biology.PNAS,
103(25):9452–9457, June 20 2006.

[27] L. von Bertalanffy.General systems theory: foundations, developments, applica-
tions. George Braziller Inc., New York, NY, 1967.

[28] MetaPlab website. Url: http://mplab.sci.univr.it.

Simulation of Membrane Computing for
Secure Mobile Ad Hoc Networks

———————————————
Das, Digendra K.

New York Nano-Bio-Molecular Information Technology (NYNBIT) Incubator,
Department of Mechanical and Industrial Engineering Technology
SUNY Institute of Technology, P.O. Box 3050, Utica, NY 13504-3050, U.S.A
das@sunyit.edu

This paper presents a bio inspired membrane computing simulation for an end-
to-end, secure mobile ad hoc network (MANET). Mobile ad hoc nodes remain
autonomous and organize themselves in an overall communityof network de-
vices to perform coordinated activities. Membrane computing or P systems, as
distributed and parallel computational models, are developed as an abstract bi-
ological metaphor for mobile ad hoc network nodes. Mobile adhoc membrane
networks are modeled using a transitional P system simulation, with migration
components and a guardian membrane that regulates interactions between the
trusted network component and the unknown external environment.

1 Introduction

P systems belong to the class of theoretical natural computing models inspired from
the way the live cells process chemical compounds, energy and information. They are
highly parallel and based on the notion of a membrane structure [12]. Such a struc-
ture consists of several cell-like membranes recurrently placed inside a unique skin
membrane. The regions delimited by a membrane structure areplaced in multisets of
objects, which evolve according to evolution rules associated with the regions. These
objects placed in the regions delimited by the membranes, can be transformed into
other objects and can pass through a membrane. The goal of this research was to in-
vestigate the feasibility of applying P system models as a framework to address an NP
complete problem [10,12], that of securing mobile ad hoc networks. Two basic classes
of P systems, with symbol-objects and string-objects [8] were considered. Addition-
ally P system models were developed based upon ambient mobile calculus for securing
Mobile Ad hoc Networks [2,15,16].

A mobile ad hoc network (MANET) typically consists of a largenumber, potentially
hundreds or thousands, of highly mobile data sources where users may be scattered over
a wide area with little or no fixed network support. These networks must adapt rapidly
to dynamic changes in network configurations. Mobile ad hoc networks consisting of

130 Simulation of Membrane Computing for Secure Mobile Ad Hoc Networks

a wide variety of information sources and users require the use of distributed services
and network protocols to solve the problems of mobility, weak signals and intermittent
disconnection, dynamic reconfiguration, and limited poweravailability. The DasWebPS
(P system) simulator was previously developed as part of theNew York Nano-Bio-
Molecular Information Technology (NYNBIT) incubator project. The DasWebPS sim-
ulator was used in the present research in order to model the transitional P systems that
would replicate membrane agent behavior in a mobile ad hoc network. Results from
the simulation were then abstracted using the Xholon [17] simulator’s P system model
for validation. The simulation was successfully completedin 10 iterations, terminating
when the mobile ad hoc node exits the trusted environment (e.g. skin membrane).

2 Methodology

Transitional P systems and deterministic P systems with active membranes [13] have
been simulated in various programming languages, and some of them have been used
to solve NP-complete problems as Hamiltonian Path Problem (HPP), SAT, Knapsack,
and partition problems. P systems with active membranes, input membrane and external
output are simulated in CLIPS, and used to solve NP complete problems [14]. A more
complex simulator written in Visual C++ for P systems with active membranes and
catalytic P systems is presented in [3]. It provides a graphical simulator, interactive def-
inition, visualization of a defined membrane system, a scalable graphical representation
of the computation, and step-by-step observations of the membrane system behavior.

The DasWeb PS simulator allows for enhanced application level simulation and offers a
user-friendly interface to the user. In addition it allows for debugging and visualization
features and thus is a flexible P system development tool. In the DasWeb PS simulator
all membrane computing applications are tree structures which become visible in the
GUI once an application has been opened. The application tree contains three sub trees;
Controller, View, and Model. At any time while the program isrunning, a single click
on the parent Application node will display at the bottom of the GUI the name of the
open model and the current time step.

A comparative analysis was undertaken inspired by [15, 16] applying an expressive
ambient calculus to Membrane Computing, based on a similar structure and common
concepts as a natural extension to the research described in[8,9]. The aim was to classify
mobile network components according to their behavior, andat empowering sites with
control capabilities which allow them to deny access to those agents whose behavior
does not conform to the site’s policy as described in [5]. Every site of a system conforms
to: k[M | > P] that consists of as an entity named k and structured in two layers: a
communications agent P, possibly accessing local resources offered by the site, and a
guardian membrane M, which regulates the interactions between the communications
agent and the external environment. An agent P wishing to enter a site l must be verified
by the guardian membrane before it is given a chance to enter site l. If the preliminary
check succeeds, the agent is allowed to execute, otherwise it is rejected. In other words,

Simulation of Membrane Computing for Secure Mobile Ad Hoc Networks 131

a membrane implements the policy each site wishes to enforcelocally, by ruling on the
requests of access of the incoming agents. This can be expressed by a migration rule of
the form [6, page 2]:

k[Mk| > gol.P |Q]||l[M l| > R]→ k[Mk| > Q]||l[M l| > P |R] if M l ⊢k P

The relevant parts here are P, the agent wishing to migrate from the original environ-
ment,Group A consisting of ambients (herek is the originating site and l being the
receiving site), needs to be satisfied that P’s behavior complies with its local policy. The
latter is expressed by l’s membrane,M l. The judgmentM l ⊢k P represents l inspecting
the incoming agent to verify that it upholdsM l.

Observe that in the formulation aboveM l ⊢k P represents a runtime check of all incom-
ing agents. Because of the fundamental assumption of openness, such kind of checks,
undesirable as they might be, cannot be avoided. In order to reduce their impact on sys-
tems performance, and to make the runtime simulation as efficient as possible, it was
necessary to adopt a strategy which allows for efficient agent verification. The resulting
elementary notion of trust operates from the point of view that each l, the set of sites, is
consistently partitioned between “trustworthy,” “untrustworthy,” and “unknown” sites.
Then, in a situation like the one depicted in the rule above, it was assumed that l will
be willing to accept a k-certified digest T of P’s behavior from a trusted site k. It is
therefore necessary to modify the primitive rule and the judgment⊢ k as in the refined
migration rule [6, page 3]

k[Mk| > goT l.P |Q]||l[M l| > R]→ k[Mk| > Q]||l[M l| > P |R] if M l ⊢k
T P

As discussed in [6] the difference is expressed inM l ⊢k
T P . Here, l verifies the entire

node P against Ml only if it does not trust k, the signer of P’s certificate T, otherwise,
it suffices for l to match Ml against the digest T carried by theprimitive “go” together
with P from k, so effectively shifting work from l to the originator of P.

3 Analysis

The novel contribution discussed in this paper is the notionof a “guardian membrane”
used to implement and enforce different types of security related policies [6]. Here the
focus was on the membrane agents’ migration from site x to site y: the main operational
mechanism is “between cells”, rather than intra-site (i.e.local or intra-cellular) com-
munication. Using these basic operations it was possible todevelop a working model
and subsequently simulate a transitional Membrane Computing model to verify the no-
tion of policy enforced using membranes. This required a simple policy which only
lists allowed actions and then proceeded to count action occurrences and then to apply
nondeterministic Membrane Computing policies. Policies are the enforcement of rules
concerning the behavior of single agents, and do not take into account “coalitional” be-
haviors. Here incoming agents, assumed to be benign, join clusters of resident agents

132 Simulation of Membrane Computing for Secure Mobile Ad Hoc Networks

in order to perform cooperatively potentially harmful actions, or at least overrule the
host site’s policy. Those policies intended to be applied tothe joint, composite behavior
of the agents contained at a site are referred to as local or resident. Resident policies
were explored as the final application of policy. In all the cases, the simulation adapts
smoothly; one only needs to refine the information stored in the guardian membrane
and their respective inspection mechanisms.

4 Discussion

The results reported in the analysis section reinforces thefindings as reported in [1,
2] of an inherent security feature in ambient calculus, namely that the access to an
ambient is authorized using the correct ambient name. The ambient name serves as a
type of password for accessing the ambient. In the P system model considered above,
the membranes from the Group A have the same names as the ambients (eg. nodes) they
are guarding, in this way, when an agent is going to access some node, for example, the
node named n, the corresponding membrane from the group P in the P system sends
some multiset of objects to the membrane with namen. If the ambient with namen
exists, that is the corresponding membrane with the namen, then with respect to the
definition of transitional P systems operating within a dynamic network of membranes,
the multiset of objects will be delivered to the membrane with addressn. Otherwise, the
action will be denied access until a membrane with namen appears.

There are several key components necessary to allow for secure mobile networking as
described in [7]. First and foremost it requires a rich policy language, expressive enough
to specify both authorization and information-flow policies as described in [4]. Together,
these policies regulate the use and propagation of information throughout the network.
During development of the Mobile Ad hoc membrane computing model, it was nec-
essary to express constraints on allowable mobile node behaviors that can be checked
statically. Policies appearing in node certificates are verified by hosts to ensure com-
pliance with their own local data policies. Finally, duringexecution of the simulation,
the policy language provides the vocabulary for authorization checks that are performed
at run time to enforce access control. The Mobile Ad hoc modelis based on an open
system and enforces policy rules for specification of information-flow and authorization
policies. The secure membrane networking architecture provides features for describing
the locality of data sources and the security policies that govern them. This information
is expressed as a collection of P system rules. The secure membrane networking archi-
tecture provides three services. First, it checks the certificate accompanying a node if it
is asked to execute. This protects the host against malicious or corrupted code by rul-
ing out potential flaws (e.g., buffer overflows, etc.) and ensures that the node complies
with the host’s local information-flow policy. This part of the security enforcement oc-
curs before the node is allowed to enter the network. The certificate verifier is part of
the trusted networking base. Second, the membrane networking system manages digi-
tal certificates that represent proof witnesses for the authorization and checks the node

Simulation of Membrane Computing for Secure Mobile Ad Hoc Networks 133

to make certain it has been authenticated. And third, the membrane networking system
provides secure inter-host communication. When, during the course of execution, a pro-
gram needs to exchange data with another node in the network,it does so through the
guardian membrane, which applies appropriate authentication and encryption to ensure
that the underlying communication channel is secure.

5 Conclusion

Mobile ad hoc networking is increasingly characterized by the global scale of appli-
cations and the ubiquity of interactions between mobile components. Among the main
features of the mobile ad hoc networking include secure information dissemination and
location awareness, whereby nodes located at specific sitesacts appropriately to local
parameters and circumstances, that is, they exhibit “context-aware”; mobility, whereby
information is dispatched from site to site to increase flexibility and expressivity; open-
ness, reflecting the nature of global networks and embodyingthe permeating hypothe-
sis of localized, partial knowledge of the networking environment. Such systems present
enormous difficulties, both technical and conceptual, and are currently more at the stage
of future prospects than that of conventional networking practice. Two concerns, how-
ever, appear to clearly be of a far reaching importance: security and mobility control,
arising respectively from openness and from mobile ad hoc node and resource migra-
tions.

Bibliography

[1] C. Braghin, D. Gorla, and V. Sassone.A distributed calculus for role-based access
control. In Proc. of 17th Computer Security Foundations Workshop (CSFW’04),
48-60. IEEE Computer Society, 2004.

[2] L. Cardelli, G. Ghelli, and A. D. Gordon.Ambient groups and mobility Mem-
branes. In International Conference IFIP TCS, number 1872 in Lecture Notes in
Computer Science, pages 333-347. Springer, August 2000.

[3] G. Ciobanu, D. Paraschiv:P system software simulator. Fundamenta Informati-
cae,49, 1-3 (2002), 61-66.

[4] A. Cortesi, and R. Focardi.Information Flow Security in Mobile Ambients. In
Proc. of International Workshop on Concurrency and Coordination CONCOORD’01,
Lipari Island, July 2001, volume 54 of Electronic Notes in Theoretical Computer
Science, Elsevier, 2001

[5] D. Gorla, M. Hennessy, V. Sassone,Security Policies as Membranes in Systems
for Global Computing, FGUC 2004 Preliminary Version (2004). Final version
published in Electronic Notes in Theoretical Computer Science.

[6] D. Gorla, M. Hennessy, and V. Sassone.Security policies as membranes in systems
for global computing. In Proc. Workshop on Foundations of Global Ubiquitous
Computing (FGUC), Preliminary version. London, ENTCS. Springer, 2004.

134 Simulation of Membrane Computing for Secure Mobile Ad Hoc Networks

[7] L. Hash, P. Fitzgibbons, and D. Das,Secure Architecture for Extensible Mobile
Internet Transport Services: Implementation, SPIE Defense and Security Sympo-
sium 2006, Session 2, April 17, 2006, Orlando, FL.

[8] S.N. Krishna, R. Rama:A Variant of P Systems with Active Membranes: Solving
NP-Complete Problems. Romanian Journal of Information Science and Technol-
ogy, 2, 4, 1999, 357-367.

[9] S.N. Krishna, R. Rama:P Systems with Replicated Rewriting. Journal of Au-
tomata Languages, and Combinatorics, 6, 3 (00), 345-350.

[10] A. Obtulowicz: Deterministic P Systems for Solving SAT Problem. Romanian
Journal of Information Science and Technology. 4, 1-2(2001), 195-202.

[11] A. Paun:On P Systems with Membrane Division. In Unconventional Models of
Computation (I. Antoniou, C.S. Calude, M.J. Dinneen, eds.), Springer, London,
2000, 187-201.

[12] G. Paun.P Systems with Active Membranes: Attacking NP-Complete Problems.
Journal of Automata, Languages and Combinatorics, 6, 1 (2001), 75-90.

[13] G. Paun.Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
[14] M.J. Perez-Jimenez, F.J. Romero-Campero:A CLIPS simulator for recognizer P

systems with active membranes, Proceedings 2nd Brainstorming Week on Mem-
brane Computing, University of Sevilla Tech. Rep 01/2004, 387-413.

[15] I. Petre, L. Petre,Mobile Ambients and P-Systems, Journal of Universal Computer
Science, vol. 5, no. 9 (1999), 588-598. Springer PublishingCompany.

[16] V. Rogozhin, E. Boian,Simulation of Mobile Ambients by P Systems. Part 2in
Proceedings of WMC 2003, Lecture Notes in Computer Science,Springer Pub-
lishing, Berlin, Germany, 2003, 431-442.

[17] Xholon Project, retrieved from:http://www.primordion.com/Xholon/

Usefulness States in New P System
Communications Architectures

———————————————
Juan Alberto de Frutos, Fernando Arroyo, Alberto Arteta

Universidad Politécnica de Madrid, Escuela Unversitariade Informática,
Dpto. de Lenguajes, Proyectos y Sistemas Informáticos,
Crta. de Valencia Km. 7, 28031 Madrid, Spain
{jafrutos, farroyo, aarteta }@eui.upm.es

Dealing with distributed implementations of P systems, thebottleneck commu-
nication problem has arisen. When the number of membranes grows up, the
network get congested. In agreement with this, several published works have
presented an analysis for different architectures, which implement P systems in
a distributed cluster of processors, allocating several membranes in the same
processor. The purpose of these architectures is to reach a compromise between
the massively parallel character of the system and the needed evolution step
time to transit from one configuration of the system to the next one, solving the
bottleneck communication problem.
The work presented here carries out an analysis of the semantics of the P sys-
tems, in several distributed architectures. It will be solved how to restructure P
systems when dissolutions or inhibitions take place in membranes. Moreover,
it will be also determined the extra information necessary at every communica-
tion step in order to allow all objects to arrive at their targets without penalizing
the communication cost. This analysis will be performed on the base of use-
fulness states, which were presented in a previous work. Theusefulness states
allow each membrane of the system to know the set of membraneswith which
communication is possible at any time.

1 Introduction

Membrane Computing was introduced by Gh. Păun in [6], as a new branch of natural
computing, inspired on living cells. Membrane systems establish a formal framework
in which a simplified model of cells constitutes a computational device. Starting from
a basic model, Transition P systems, many different variants have been considered; and
many of them have been demostrated to be, in computational power, equivalent to the
Turing Machine. Strictly talking from an implementationalpoint of view and consider-
ing only the simplest model (Transition P systems), there are several challenges for re-
searchers in order to get real implementatios of such systems. Today, one of the most in-
teresting is to solve the communications bottleneck problem when the number of mem-
branes grows up in the system. Accordingly with this fact, several works [8], [2] and [3]

136 Usefulness States in New P System Communications Architectures

present an analysis for distributed architectures based onallocating several membranes
in the same processor, in order to reduce the number of external communications. These
architectures allow certain degree of parallelism in application rules phase, as well as in
the communication phase in a transition step during P Systemexecution.

On the other hand, usefulness states were defined in [5] with two main goals. First and
foremost, a usefulness state in a membrane represents the set of membranes to which
objects can be sent by rules in the current evolution step. This information is essential
to carry out a transition correctly. And second, usefulnessstates are used to improve
the first phase -evolution rules application inside membranes- getting useful rules in a
faster way. In [8], [2] and [3] the total time for an evolutionstep is computed, and what
is more important is the fact that reducing the application phase time, the system obtains
an important gain in the evolution step total time.

The goal of this paper is to fit usefulness states into communications architectures pre-
sented in [8], [2] and [3], solving the problem of membrane dissolution and membrane
inhibition, not considered in those works. Furthermore, itwill also considered the re-
quired information for objects to reach their respective target membranes. This infor-
mation is based on the usefulness state concept.

2 Related works

At this point, several distributed architectures for implementing Transition P systems
are described, and also the usefulness state concept is reviewed.

2.1 Communication architectures In order to face the communication problem in
P System implementations, Tejedor et al. present in [8] an architecture named ”partially
parallel evolution with partially parallel communication”. This architecture is based on
the following pillars:

1. Membrane distribution. Several membranes are placed at each processor which
will evolve, at worst, sequentially. Then, there are two kinds of communications:

• Internal communications between membranes allocated at the same proces-
sor, with negligible communication time due to the use of shared memory
techniques.
• External communications between membranes placed in different processors

2. Proxies used to communicate processors. When a membrane wants to communi-
cate with another one allocated at a different processor, uses a proxy. Therefore,
external communications are carried out between proxies, no between membranes.
This implies that each processor has a proxy which gathers objects from all mem-
branes allocated on it, and after that it communicates with suitable proxies.

Usefulness States in New P System Communications Architectures 137

3. Tree topology of processorsin order to minimize the total number of external com-
munications in the system. Proxies only communicate with their parent and chil-
dren proxies. Figure 2.1 shows an example of a membrane structure for a transition
P System and its distribution in an architecture with four processors.

Fig. 2.1 Membrane distribution in processors

4. Token passing in the communicationsto prevent from collisions and network con-
gestion. A communication order is established through a token, and then only one
proxy tries to communicate at any moment. This token travelsthrough a depth
search sequence in the topology of processors tree. In the architecture of figure
2.1, the order in communications would be the following: P1 to P2, P2 to P4, P4
to P2, P2 to P1, P1 to P3 and finally P3 to P1.

More recently, Bravo et al. [2] have proposed a variant of this architecture. Membranes
are placed in slave processors and a new processor is introduced acting as master. Slaves
apply rules and send to the master multisets of objects whosetargets are in a different
slave. Master processor redistributes the multisets to itsown slaves. This architecture
keeps the parallelization in the application phase obtained in [8], but also it seeks for
parallelizing the rule application phase in some processors with the communication
phase in others. This produces the reduction of the evolution step time in the system.

An evolution of the last architecture was proposed in [3] by Bravo et al. Now, several
master processors in a hierarchical way are used. This fact allows the parallelization of
external communication and drastically increases the parallelization of application rules
and external communication phases. As result, a better evolution step time in the system
is obtained.

2.2 Uselfulness states. The usefulness state concept at membranes of a P System
is introduced in [5]. This state allows to any membrane to know the set of children

138 Usefulness States in New P System Communications Architectures

membranes to communicate with (membrane context). This information is necessary to
determine the set of rules to be applied in a evolution step, and it changes dynamically
when membranes are dissolved or inhibited in the P System.

The set of usefulness states for a membranej in a Transition P System can be ob-
tained statically, that is, at analysis time, as we can see in[5]. One usefulness state in
a membrane represents a valid context for that membrane, that is, a context that can be
reached after an evolution step. As membrane context can change dynamically, transi-
tions among states are also defined in [5].

From a given usefulness state can be obtained the set of useful rules. A rule is useful
in an evolution step if all its targets are adjacent, not dissolved and not inhibited, then
communication is feasible.

Figure 2.2 represents our example of P System. In this case, only rules associated to
membrane 3 are detailed. Symbolδ in membranes 6, 9, 10 and 11 represents the possi-
bility of these membranes to be dissolved by the applicationof some rules inside them.
The symbolτ represents the possibility of inhibiting for membranes 6, 7and 11 by the
same cause. Usefulness states for membrane 3 are depicted intable 2.1, together with
their contexts and useful rules associated.

Fig. 2.2 Dissolving and inhibiting capabilities in membranes

Tables defining transition among states are also defined at analysis time. Suitable transi-
tions take place when a child membrane of the current contextchanges its permeability.
In such a way that, during system execution, membranes will obtain the set of useful
evolution rules directly from their usefulness states, without any computation.

From an implementational point of view, problems arise whenmembranes have a high

Usefulness States in New P System Communications Architectures 139

Usefulness State Context Useful rules

q0 {6, 7} r1, r2, r3, r5

q1 {6} r3, r5

q2 {8, 9, 7} r2, r4, r5

q3 {8, 9} r4, r5

q4 {8, 7} r2, r4, r5

q5 {9} r5

q6 {7} r2, r5

q7 ∅ r5

Table 2.1 Usefulness states for membrane 3

number of states, which cause transition tables to grow up. That is why in [5] it is
proposed to encode usefulness states in order to avoid transition tables. Each one of
usefulness states is encoded depending on its context, hence transitions are carried out
directly in the code. Accordingly with this idea, two definitions are introduced:

Total Context for membrane j. It is the set made up of all membranes that eventually
can become children of membranej. Therefore, all contexts are included in the total
context.

TC(j) = Child Of(j)
⋃

jk∈Child D(j)

TC(jk) (30)

whereChild Of(j) is the set of all membranej children in the initial membrane struc-
ture; and whereChild D(j) is the set of membranej children that can be dissolved.

Normalized Total Context for membranej. It is defined as theTC(j) sorted in depth
and in pre-order.

TCNormal(j) = (j1, TCNormal(j1), . . . , jn, TCNormal(jn)) (31)

wherejk ∈ Child Of(j) from left to right inµ, that is, in the initial membrane struc-
ture; andTCNormal(jk) is considered as null if membranejk has not dissolving capa-
bility. For instance, in our P system,TCNormal(3) = {6, 8, 9, 7}.

Each one of the usefulness states of a membranej is encoded byTCNormal(j) depend-
ing on its context, with binary logic. The value 1 representsthat the membrane belongs
to the state context. For example, the usefulness stateq0 of membrane 3, representing
the context{6, 7}, is encoded as 1001.

If qj(t) = (i1, . . . , ik, . . . , in) encoded byTCNormal(j) is the usefulness state for
membranej at timet, the transitional logic will be the following:

140 Usefulness States in New P System Communications Architectures

1. If membraneik at timet is inhibited, then:qj(t + 1) = (i1, . . . , 0, . . . , in)

2. If membraneik at timet comes back to be permeable, then:qj(t+1) = (i1, . . . , 1,
. . . , in)

3. If membraneik at time t is dissolved, it has to send its usefulness stateqij (t),
encoded by its normalized total contextTCNormal(ik), to the membranej. Con-
sidering formula 31, the usefulness state for membranej can be expressed in a
deeper way asqj(t) = (i1, . . . ,ik, TCNormal(ik), . . . ,in). Then, the transition
obtained for membranej is qj(t + 1) = (i1, . . . ,0, qij (t), . . . ,in)

In the proposed example, if membrane 3 is in the usefulness stateq3(t) = 1001, encoded
by TCNormal(3) = {6, 8, 9, 7} and membrane 6 is dissolved inq6(t) = 11 encoded by
TCNormal(6) = {8, 9}, it is obtained the transitionq3(t + 1) = 0111

3 Usefulness states updating in membrane dissolution and
inhibition

In order to fit properly usefulness states updating, we will previously describe the su-
cession of tasks that are carried out in an evolution step before communications initiate,
that is, in the phase of rules application inside a membrane.

1. Active rules are obtained at every membrane of the system.

2. Active rules are applied in a maximal parallel and non deterministic way at every
membrane of the system.

3. Each membrane of the system determines the result of rulesapplication. The fol-
lowing information is obtained:

• Objects which are produced and remain at the same membrane.
• Objects which are produced and have as target an adjacent membrane of the

P System. These objects will be sent to the proxy of the processor in which
the membrane is placed. This proxy will be in charge of collecting objects and
sending them to their respective targets, as will be described in section 5.
• A new permeability state for the membrane, which is computedfollowing

the figure 3.3 automaton. This automaton represents transitions among mem-
branes states based on the resulting dissolution and inhibition in the applied
rules. The membrane will notify its new permeability state to the proxy only
in case of changing.

When a proxy receives the information sent by a membrane -newpermeability state and
current usefulness state in case of dissolution- it is necessary to carry out the following
tasks:

Usefulness States in New P System Communications Architectures 141

Fig. 3.3 Membrane permeability states

1. The proxy has to find out the father membrane. It is necessary to consider that it
can change dynamically, as membranes are dissolved. Furthermore, the father may
be allocated in another processor.

2. The proxy has to notify the new situation to the father. Thelatter will update its
usefulness state according to this situation, as it has beenshown in section 2.2

In order to achive these goals, the proxy must know the membrane structure, as regards
membranes allocated in the proxy processor. And for each oneof them, the proxy must
know the following information:

• j : membrane identifier.
• D(j) : Dissolved. The value will be true if membrane j is dissolved.
• TCL(j) : Total Context Lenght. This value is computed in analysis time following

the formula:

TCL(j) =

n∑

k=1

(1 + TCL′(jk)) (32)

wherejk ∈ Child Of(j) and

TCL′(jk) =

{
TCL(jk) if jk has dissolving capability

0 otherwise

}

• PFTC(j) : Position at Father Total Context. This value is the membrane j position
at the normalized father total context. This value is computed from the initial struc-
ture in analysis time following the formula:

PTCF (ji) = 1 +

i−1∑

k=1

(1 + TCL′(jk)) (33)

wherejk ∈ Child Of(j) at the left ofji in µ

For instance, asTCNORMAL(3) = {6, 8, 9, 7}, values ofPFCT for both children
membranes are obtained from this total context. Specifically, PFTC(6) = 1 and
PFTC(7) = 4.

• USM(j) : Usefulness State Mask. The membranej will make use of this mask in
the usefulness state updating process.

142 Usefulness States in New P System Communications Architectures

Following with the example in figure 2.1, figure 3.4 represents the stored information in
proxies. The values forTLC(j) andPFTC(j) are worked out from the corresponding
normalized total context, which are obtained taking into account dissolving and inhibit-
ing capabilities of membranes, depicted in figure 2.2.

Fig. 3.4 Information stored in proxies to update usefulness states

The proxy looks for the father of the membrane which has changed the permeability
state, going up in the membrane structure. In this case, it isnecessary to useD(j) to
find a not dissolved membrane.

The proxy has also to prepare the suitable information for father membrane in order
to update its usefulness state. The updating process is performed by changing the bit
representing the membrane which has change its permeability state. This operation is
performed through a XOR between the usefulness state and theUSM(j) field. As it is
shown in 2.2, the following cases can be found:

• Inhibition of a child membrane. The position associated to the child membrane in
the usefulness state has to be changed from 1 to 0, which meansthat communi-
cation is not possible for the next evolution step. A XOR operation with a bit 1
reaches this change. For instance, let us suppose that membrane 3 in our P System
has the usefulness state 1001. AsTCNormal(3) = {6, 8, 9, 7}, this state represents
the context{6,7}. Let us also suppose that membrane 7 is inhibited at this time.
The usefulness state for membrane 3 is updated as follows:

USM(3) = 0001 (bit 1 for membrane 7)
1001 XOR 0001 = 1000 (Context(3) ={6})

• Removing inhibition of a child membrane. The position associated to this mem-
brane has to be changed from 0 to 1. This represents that the child membrane
accepts objects for the next evolution step. Again, a XOR operation with a bit 1

Usefulness States in New P System Communications Architectures 143

reaches the change.

• Dissolution of a child membrane. The bit representing the child membrane in the
total context has to be changed from 1 to 0. Moreover, severalof the following
positions in the normalized total context represent the context of the dissolved
membrane, as formula 31 shows, and necessarily these bits have to be replaced
with the usefulness state of the dissolved membrane. One more time, these changes
can be done with a XOR operation between the usefulness stateand the mask
stored in theUSM(j) field. For instance, let us suppose that the usefulness stateof
membrane 3 is 1001, representing context{6, 7}, and membrane 6 is dissolved in
the usefulness state 10. As theTCNormal(6) = {8, 9}, this state represents context
{8}. The usefulness state of membrane 3 would be updated in the following way:

USM(3) = 1100 (bit 1 for 6, followed by its usefulness state)
1001 XOR 1100 = 0101 (Context(3) ={8, 7})

The main problem now is to exactly determine the position of this information in the bi-
nary mask, that is, in the fieldUSM(j). In order to do this, it is necessary thePFTC(j)
field. The proxy goes up in the membrane structure looking forthe father membrane,
and simultaneously performing the addition ofPFTC(j) fields for every dissolved
membranes found in the path.

As an example, let us suppose that membrane 9 is dissolved in aevolution step in which
membrane 6 was already dissolved in a previous step, in such away that membrane 3 is
the membrane 9 father. TheUSM(3) field can be obtained in the following way:

Information = 1 (membrane 9, followed by its usefulness state)

Position =PFTC(9) + PFTC(6) = 3

Lenght =TCL(3) = 4

—————————————–

USM(3) = 0010 (asTCNormal(3) = {6, 8, 9, 7}⇒ 9 dissolution)

When a membranej changes its permeability, the algorithmChangeUS(Change Use-
fulness State, figure 3.5) will carry out this process. The operator + represents strings
concatenation and0n represents a string withn symbols0.

In an evolution step, it may happen that several children membranes change their perme-
abilities, involving the same father. Therefore, the usefulness state of a membrane has
to be modified with several masks. No matter the order in whichthe proxy processes
permeability changes, conmuntative and associative properties of XOR operation allow
to obtain the value forUSM(j) correctly . Let us suppose, in our example, that mem-
branes 6 and 9 are dissolved in the same evolution step. If proxy processes membrane 6

144 Usefulness States in New P System Communications Architectures

Fig. 3.5 Algorithm used to obtain theUSM field for membranej father

before, the resultingUSM(3) is procesed as follows:

Both dissolutions have been considered owing to XOR operation in line 15. On the
other hand, if proxy processes membrane 9 before, the resulting UMS(3) is procesed
as follows:

When membrane 6 is dissolvedUMS(6) is inherited by the father membrane, that is
UMS(3), through XOR operation in line 4.

Usefulness States in New P System Communications Architectures 145

Finally, it is important to note that the father membrane maybe placed in a different
processor; therefore the process is carried out by several processors in a distributed
way. The algorithm of figure 3.5 deals with this situation in lines 8 and 13, in which
OutProcessorchecks if the target membrane is allocated in other processor. Section 6
deals with communications in order to reach a distributed process.

4 Encoding targets of evolution rules within total context

Evolution rules in transition P systems have the formu → v, u → v δ or u → v τ ,
with u ∈ O+ andv ∈ (O+ × TAR)∗, whereO is the alphabet of objects, and
TAR = {here, out} ∪ {inj |j is a membrane label}. Symbolδ represents membrane
dissolution, while symbolτ represents membrane inhibition.

Usually, transition P systems implementations up to now [4][7] require to store a mem-
brane identification for every targetinj in every rule in every membrane. In this paper
a compact representation for evolution rules consequent based on the concept of total
context is presented. It allows to represent targets without membranes identifications,
what reduce significantly the necesary space to store rules.Moreover, this representation
allows proxies to find any membrane target in a precise way.

The total context of a membrane is obtained at analysis time,and it encodes any possible
inj target for evolution rules of the membrane. Hence, adding a binary mask of length
equal to membrane total context length, it is possible to control if a rule sends objects
to a determined child membrane with labelj. It is expressed setting to 1 thej position
in the binary mask.

In addition, we propose four bits more in order to encode the complete consequent of
a rulerk, two for targets here(bk

h) and out(bk
o) respectively and two for representing

membrane dissolution(bk
δ) and inhibition(bk

τ). Figure 4.6 shows the proposed encoding
for a rule consequent. Besides the sequence of bits, each target has a multiset associated,
represented asMk

h Mk
o Mk

1 . . . Mk
n .

On the other hand, the antecedent of a rulerk can be represented with another multiset:
Mk

a .

Fig. 4.6 Encoding for a rule consequent

146 Usefulness States in New P System Communications Architectures

Table 4.2 contains the encoded consequent of membrane 3 rules in our example. Let us
remind that the normalized total context for this membrane is{6,8,9,7}

Rule Encoding Multisets

r1 : a2b → (a2 in7)(b in6) τ 00100110 M1
1 = b, M1

4 = a2

r2 : a2b2 → (a2 in7)(a
2 here)(b2 here) 10000100 M2

h = a2b2, M2
4 = a2

r3 : a2b5 → (b2 in6)(b
2 out) δ 01100001 M3

o = b2, M3
1 = b2

r4 : a4 → (a2 here)(b in8) 10010000 M4
h = a2, M4

2 = b

r5 : b2 → (a here)(b here) 10000000 M5
h = ab

Table 4.2 Encoding consequent of membrane 3 rules

In section 3 it was enumerated the task list to be performed inevolution rules applica-
tion phase in membranes. Let us explain how can be used and computed the resulting
evolution rule using this compact representation of binarymask and multiset of objects.
Let MR(p) = rn1

1 . . . rnm
m =

∑m
i=1 niri be the multiset of rules to be applied in

the evolution stepp, whereni means the number of times the ruleri has to be applied.
Then, it is needed to compute:

• C(p), the sequence of bits, encoding targets, for the multiset ofevolution rules
consecuent (bh bo b1 . . . bn)

C(p) = OR∀ ri ∈ MR(p) C(ri) (34)

• Mh(p), Mo(p), M1(p), . . . , Mn(p), the list of multisets of objects associated to
C(p).

Mh(p) =
∑

∀ ri ∈ MR(p)

ni M i
h (35)

Mo(p) =
∑

∀ ri ∈ MR(p)

ni M i
o (36)

Mj(p) =
∑

∀ ri ∈ MR(p)

ni M i
j (37)

• And finally, Ma(p) the antecedent of the multiset of evolution rules.

Ma(p) =
∑

∀ ri ∈ MR(p)

ni M i
a (38)

When this process finishes, membranes proceed to data delivery:

Usefulness States in New P System Communications Architectures 147

• MultisetsMh(p) andMa(p) will be applied directly to the membrane. Considering
w the multiset of objects placed in the membrane at the beginning of the evolution
step,w is updated by:

w = w − Ma(p) + Mh(p) (39)

• bo b1 . . . bn, together withMo(p) M1(p) . . . Mn(p), will be sent to the proxy
processor.

• bδ bτ will be used to find out changes of permeability, as the automaton in figure
3.3 shows. Ifbδ is equal to 1, the transitionδ is applied; otherwise ifbτ is equal to
1, the transitionτ is applied; finally, the transitionδ τ is applied if bothbδ andbτ

are equal to 1. In the case of permeability change, membrane will notify the new
permeability state to the proxy, in order to update the usefulness state of its father,
as it is detailed in section 3.

5 Targets search in proxies

When a membrane has to send objects to its adjacent membranes, it uses the proxy. The
membrane sends to the proxy a pair of data:

(Targets, MS)

WhereTargets is a binary sequence encoding labels of target membranes (bo b1 . . . bn)
and MS is the sequence of multisets associated to each one of the target membranes
(Mo(p) M1(p) . . . Mn(p)). At this moment, the proxy has to perform the following
tasks:

1. Target membrane forMo(p) is the father membrane. Hence the proxy will go up
in the membrane structure until finding out the first not dissolved membrane.

2. Target membranes forM1(p) . . . Mn(p) are encoded byb1 . . . bn. Hence, the
proxy needs to analyse the Normalized Total Context of the source membrane.
Considering equation (2) for Normalized Total Context of a given membrane, for
every child membrane the proxy has to keep two important data: the dissolving
capability of this membrane, and the length of its normalized total context.

As consequence, in order to perform targeting search, proxyhas to store the following
information related to membranes allocated on its processor:

• D(j) : Dissolved. The value will be true if membranej is dissolved.
• DC(j) : Dissolving Capability. Its value will be true if there is any evolution rule

which could dissolve the membranej. It is obtained at analysis time.
• TCL(j) : Total Context Length.
• M(j) : Multiset for membranej. When proxy determines that membranej is a

target, it stores temporally the suitable multiset in theM(j) field.

148 Usefulness States in New P System Communications Architectures

Moreover, it is also necessary to note that one or more targets could be placed at different
processors. Hence, the proxy has to prepare properly some information to send them,
because search of targets must continue on these processors. So, proxy has to store
some data about membranes placed in other processors with which there are established
connection -virtual connections in figure 2.1-. The needed data for the proxy are:

• DC(j)

• TCL(j)

• M(j)

• Targets(j): To store a sequence of bits encoding a list of targets.

• MS(j) : To store a list of multisets associated to the sequence of targets. This field
and the previous one are needed only for membranes with dissolving capability.

Figure 5.7 shows the required information by proxies of the processors depicted in
figure 2.2.

Fig. 5.7 Information stored in proxies to search targets

5.3 Target search forMo(p) The algorithm presented here (TargetOut) looks for
the father of membranej in order to send it the multisetMo(p). In line 5, Mo(p) is
assigned to the temporary fieldM of the father. Line 3 consider the situation in which
search has to be continued in another processor, then the partial result remains in a field
M awaiting to be sent to the appropiate processor. Section 6 ofthis paper deals with
communications in architectures.

Usefulness States in New P System Communications Architectures 149

Fig. 5.8 Target search for multisetMo(p)

5.4 Targets search forM1(p) to Mn(p) The proxy has to interpret the normalized
total context of the source membrane. With this aim, the proxy will go down into the
sub-tree of the membrane structure, starting from the source membrane, in depth and in
pre-order. When a membranej has not dissolving capability (DC(j)) the analysis of
this branch of the sub-tree is finished.

The recursive algorithm in figure 5.9 describes the search oftargets from the source
membranej, the sequence of bits, encoding targets (Targets) and the list of multisets
(MS) associated to targets. The algorithm visits children membranes from left to right.
When the corresponding bitbi is equal to 1, the multisetMi(p) is associated to the child
membrane (line 7). Otherwise the child membrane is not a target, but if it has dissolving
capability (DC(j)) then the search has to be continued frombi+1 into the normalized
total context of the child membrane, as equation (2) shows. In case of the child mem-
brane were allocated in the same processor, the search continues in the child membrane
by making a recursive call in line 17. Otherwise, the information corresponding to the
normalized total context of the child membrane is stored inTargets(j) andMS(j)
fields in order to continue searching in the appropriate processor (lines 19 and 20)

An additional detail of the algorithm is the following: ifbi is equal to 1 and the child
membrane has dissolving capability, it has to skip the totalcontext of the current child
membrane, because these membranes are not possible targets(line 8).

5.5 Membrane dissolution As it has been set before, the proxy has to execute al-
gorithmsTargetOut andTarget In for every membrane placed at the processor which
require sending objects. Moreover, it has to execute the algorithmChangeUSfor every
membrane which notifies a change of permeability.

Nevertheless, membrane dissolution has not been solved yet. Dissolution takes place
when an evolution step finishes. Then, objects remaining inside the membrane have to
pass to its father. In this way, when membranej is going to be dissolved, we have to
bear in mind the following:

150 Usefulness States in New P System Communications Architectures

Fig. 5.9 Searching targets for multisetsM1(p) to Mn(p)

1. Self processing in membrane: Objects remaining inside membrane after evolution
rules application will be sent to the father membrane together withMo(p)

Mo(p) ← Mo(p) + w − Ma(p) + Mh(p)

wherew is the multiset of objects in the membrane at the beginning ofthe evolution
step

2. Objects coming from other membranes in the current evolution step. In this case,
it is needed to distinguish two possibilities depending on whether objects are pro-
cessed by proxy: before or after proxy set the membrane as dissolved (fieldD(j)).
.

(a) M(j) stores objects arriving the proxy before it has marked the membrane
j as dissolved. At the moment the proxy marks membranej as dissolved, it
sendsM(j) to membranej father usingTargetOutalgorithm. This behaviour
is reached by adding lines 5 to 9 to theChangeUSalgorithm, as figure 5.10
shows.

(b) In case of objects for membranej arriving proxy after membranej has been
marked as dissolved and before the current evolution step has finished, the
TargetsIn algorithm will send them to membranej father -lines 5 and 6 of
figure 5.9-.

Usefulness States in New P System Communications Architectures 151

Fig. 5.10 In case of dissolution,M(j) is sent to membranej father

6 Results distribution

At this moment, when system proxies finish all the tasks explained above with al-
gorithmsChangeUS, TargetOut andTargetsIn, their results are stored inUSM(j),
M(j), Targets(j) andMS(j) fields, where membranej may be allocated in other
processor. In order to deliver these results, the distributed architecture in which the
membrane system is implemented is very important. This is because of external com-
munications are implemented by distributed architecturesin different ways.

6.6 Architecture proposed by Tejedor et al. in [8] The external communications
are established in depth in the processors tree. Therefore,after receiving information
coming from the upper level, a processor P communicates witheach descendant pro-
cessor in both directions and from left to right; and finally,P sends data to its ascendant
processor. Taking this order into account, the sequence of tasks to be carried out by
processor P proxy is the following:

1. P proxy gets all data contained inM(j), Targets(j) andMS(j) coming from
ascendant processor proxy.

2. P proxy processes the arrived data usingTargetsIn algorithm forTargets(j) and
MS(j) fields. Multisets received inM(j) are placed in the correspondingM(j)
field, but if membranej has been marked as dissolved in the current evolution step,
thenM(j) has to be sent to membranej father withTargetOut algorithm. In this
case,M(j) will come back to the ascendant processor in step 4.

3. for each descendant processor of P from left to right:

(a) P proxy sends the corresponding information (M(j), Targets(j) andMS(j))
to the descendant processor.

152 Usefulness States in New P System Communications Architectures

(b) P proxy waits until the descendant processor replies with data composed of
fieldsM(j) andUSM(j).

(c) P proxy continues searching targets upwards from membrane j related to
fieldsM(j) andUSM(j) by usingTargetOut andChangeUSalgorithms.

4. Once P proxy has processed all data from all its descendantprocessors, it sends to
its ascendant processor the corresponding fieldsM(j) andUSM(j).

5. Finally and through internal communications, P proxy delivers the definitive fields
M(j) andUSM(j) associated to inner membranes processor. The evolution step
finishes when every membranej updates its multiset and its usefulness state with
this information, as follows:

w ← w + M(j)

Usefulness State ← Usefulness State XOR USM(j)

6.7 Architectures proposed by Bravo et al. in [2] and [3] These architectures
make use of one [2] or several [3] master processors. Master processors are in charge of
controlling communications among slaves processors, while membranes of the P sys-
tem are placed on slaves processors. Hence, a master processor has to store and process
M(j), USM(j), TCL(j), PFTC(j), CD(j) andD(j) fields, for all membranes be-
longing to slaves controlled by the master. As it was said above,D(j) is a dynamic field
and it is changed during execution by membranes. Therefore,a problem arises with the
D(j) field updating. Proxies associated to slave processors haveto notify membranes
dissolutions to master proxy.

The sequence of tasks in these architectures is the following:

1. Every slave processor proxy sends data to the suitable master in its corresponding
turn. In particular, it sends fieldsM(j), USM(j), Targets(j) andMS(j) to its
master, regardless of the target processor. Additionally,it has to send the list of
dissolved membranes in the current evolution step.

2. Master proxy processes the incomming information as follows: Target(j) and
MS(j) with TargetsIn algorithm,M(j) with TargetOut algorithm andUSM(j)
with ChangeUSalgorithm. Furthermore, master proxy updatesD(j) field for all
dissolved membranes, taking into account the same questions as in section 5.3.

3. Master proxy sends the correspondingM(j) andUSM(j) fields to each one of
the slaves processors.

4. Finally, slave proxy sends to each one of its inner membranes their corresponding
M(j) andUSM(j) fields. Then, evolution step finishes.

7 Conclusion

Membranes make use of usefulness state to determine the set of membranes with which
they can communicate. Moreover, when dissolutions or inhibitions are produced in the

Usefulness States in New P System Communications Architectures 153

system, it is only needed usefulness states changes in father membranes in order to
reconfigure the membrane structure of P systems.

The work presented here shows that usefulness states can be implemented in several
distributed architectures for membrane systems implementations [8], [2] and [3]. In
addition, usefulness states solve permeability changes inmembrane systems for the
referred architectures.

In [5], membrane total context concept was defined. This paper shows how to use it in a
very useful manner to encode targets in evolution rules, avoiding labels in membranes.
This encoding method allows to find any target membrane in a precise way. Moreover, it
can be used in several distributed architectures for membrane systems implementation
[8], [2] and [3].

It is also presented here a semantic analysis of P systems fordetermining what kind
of information is relevant in the phase of communications among membranes. In this
sense, it was necessary to determine how to solve the targeting problem without pro-
ducing an overload in the system communication; and how to update and communicate
new membranes states all over the systems. The presented solution based on useful-
ness states has been proved to be useful at least in distributed architectures presented
in [8], [2] and [3].

Bibliography

[1] F. Arroyo, C. Luengo, J. Castellanos, L.F. de Mingo,A Binary Data Structure for
Membrane Processors: Connectibity Arrays(A. Alhazov, C. Martn-Vide and Gh.
Păun Eds), 2003. Preproceedings of the Workshop on Membrane Computing, Tar-
ragona, Spain, 41-52.

[2] G. Bravo, L. Fernández, F. Arroyo. J. Tejedor,Master Slave Distributed Architec-
ture for Membrane Systems Implementation, 8th WSEAS Int. Conf. on Evolutionary
Computing (EC’07), June 2007, Vancouver (Canada).

[3] G. Bravo, L. Fernández, F. Arroyo, M. A. Pea,Hierarchical Master-Slave Architec-
ture for Membrane Systems Implementation, 13th Int. Symposium on Artificial Life
and Robotics 2008 (AROB ’08), Feb 2008, Beppu, Oitia (Japan).

[4] G.Ciobanu, W. Guo,P Systems Running on a Cluster of Computers. Workshop on
Membrane Computing (Gh. Păun, G. Rozemberg, A. Salomaa Eds.),2004, LNCS
2933, Springer, 123-139

[5] J. A. Frutos, L. Fernández, F. Arroyo, G. Bravo,Static Analysis of Usefulness States
in Transition P Systems, Proceedings of the Fifth International Conference, Infor-
mation Research and Applications I.TECH 2007, June 2007, Varna, Bulgary. 174-
182.

[6] Gh. Păun,Computing with Membranes, Journal of Computer and System Sciences,
61, 1, 108-143. 2000

154 Usefulness States in New P System Communications Architectures

[7] A.Syropoulos, E.G. Mamatas, P.C. Alliomes et al,A Distributed Simulation of P
Systems(A. Alhazov, C. Martn-Vide and Gh. Păun Eds), 2003. Preproceedings of
the Workshop on Membrane Computing, Tarragona, Spain, 455-460.

[8] J. Tejedor, L. Fernández, F. Arroyo, G.Bravo,An Architecture for Attacking the
Bottleneck Communication in P Systems, In: M. Sugisaka, H. Tanaka (eds.), Pro-
ceedings of the 12th Int. Symposium on Artificial Life and Robotics, Jan 25-27,
2007, Beppu, Oita, Japan, 500-505.

A P-Lingua Programming Environment
for Membrane Computing

———————————————
Daniel Dı́az–Pernil, Ignacio Pérez–Hurtado, Mario J. Pérez–Jiménez,
Agustı́n Riscos–Núñez.

University of Sevilla, Dpt. Computer Science and ArtificialIntelligence,
Avda. Reina Mercedes s/n. 41012 Sevilla, Spain
{sbdani,perezh,marper,ariscosn }@us.es

A new programming language for membrane computing, P-Lingua, is devel-
oped in this paper. This language is not designed for a specific simulator soft-
ware. On the contrary, its purpose is to offer a general syntactic framework that
could define a unified standard for membrane computing, covering a broad va-
riety of models. At the present stage, P-Lingua can only handle P systems with
active membranes, although the authors intend to extend it to other models in
the near future.
P-Lingua allows to write programs in a friendly way, as its syntax is very close
to standard scientific notation, and parameterized expressions can be used as
shorthand for sets of rules. There is a built-in compiler that parses these human-
style programs and generates XML documents that can be givenas input to
simulation tools, different plugins can be designed to produce specific adequate
outputs for existing simulators.
Furthermore, we present in this paper an integrated development environment
that plays the role of interface where P-lingua programs canbe written and
compiled. We also present a simulator for the class of recognizer P systems
with active membranes, and we illustrate it by following thewriting, compiling
and simulating processes with a family of P systems solving the SAT problem.

1 Introduction

Membrane computing (or cellular computing) is an emerging branch of Natural Com-
puting that was introduced by Gh. Păun [5]. The main idea is to consider biochemical
processes taking place inside living cells from a computational point of view, in a way
that provides a new nondeterministic model of computation.

The initial definition of this computing paradigm is very flexible, and many different
models have been defined and investigated in the area: P systems with symport/antiport
rules, with active membranes, with catalysts, with promoters/inhibitors, etc. There were
some attempts to establish a common formalization coveringmost of the existing mod-
els (see e.g. [2]), but the membrane computing community is still using specific syntax
and semantics depending on the model they work with.

156 A P-Lingua Programming Environment for Membrane Computing

This diversification also exists in what concerns the development of software applica-
tions for the simulation of P systems (see [3], [11]), as suchapplications are usually
focused on, and adapted for, particular cases, making it difficult to work on generaliza-
tions.

It is convenient to unify standards (specifications that regulate the performance of spe-
cific processes in order to guarantee their interoperability) and to implement the nec-
essary tools and libraries in order to give the first steps towards a next generation of
applications.

When designing software for membrane computing, one has to precisely describe the
variant specification that is to be simulated. This task is hard if we need to handle fam-
ilies of P systems where the set of rules, the alphabet, the initial contents and even the
membrane structure depend on the value assigned to some initial parameters. In exist-
ing software, several options have been implemented: plaintext files with a determined
format, XML documents, graphical user interfaces, etc. As mentioned above, most of
these solutions are adapted to specific models or to the specific purpose of the software.

In this paper we propose a programming language, called P-Lingua, whose programs
define P systems in a parametric and modular way. After assigning values to the initial
parameters, the compilation tool generates an XML documentassociated with the cor-
responding P system from the family, and furthermore it checks possible programming
errors (both lexical/syntactical and semantical). Such documents can be integrated into
other applications, thus guaranteeing interoperability.More precisely, in the simulators
framework, the XML specification of a P system can be translated into an executable
representation.

We present a practical application of P-Lingua giving a simulator for recognizer P sys-
tems with active membranes that receives as input an XML document generated by the
compiler and that allows us to simulate a computation, obtaining the correct answer of
the system (due to the confluence of it), and a text file with a detailed step-by-step report
of the computation. We also show an integrated development environment that plays the
role of interface where P-Lingua programs can be written andcompiled.

The paper is structured as follows. In Section 2 several definitions and concepts are
given for the sake of selfcontainment of the paper. The next section introduces the P-
Lingua programming language, and the syntax for P systems with active membranes is
specified. A solution to the SAT problem using P-Lingua is implemented in Section 4.
The compilation tool for the language is presented in the next section. In Section 6
we present an integrated development environment for P-Lingua. Section 7 presents a
simulator for recognizer P systems with active membranes. Finally, some conclusions
and ideas for future work are presented.

A P-Lingua Programming Environment for Membrane Computing 157

2 Preliminaries

Polynomial time solutions to computationally hard problems in membrane computing
are achieved by trading time for space. This is inspired by the capability of cells to pro-
duce an exponential number of new membranes in linear time. There are many ways a
living cell can produce new membranes:mitosis(cell division),autopoiesis(membrane
creation),gemmation, etc. Following these inspirations a number of different variants
of P systems has arisen, and many of them proved to be computationally universal.

For the sake of simplicity, we shall focus in this paper on a model, P systems with
active membranes. It is a construct of the formΠ = (O, H, µ, ω1, . . . , ωm, R), where
m ≥ 1 is the initial degree of the system;O is the alphabet ofobjects, H is a finite
set of labels for membranes;µ is a membrane structure, consisting ofm membranes
injectively labelled with elements ofH , ω1, . . . , ωm are strings overO, describing the
multisets of objectsplaced in them regions ofµ; andR is a finite set ofrules, where
each rule is of one of the following forms:

(a) [a→ v]αh whereh ∈ H , α ∈ {+,−, 0} (electrical charges),a ∈ O andv is a string
overO describing a multiset of objects associated with membranesand depending
on the label and the charge of the membranes (object evolution rules);

(b) a []αh → [b]βh whereh ∈ H , α, β ∈ {+,−, 0}, a, b ∈ O (send-in communication
rules). An object is introduced in the membrane, possibly modified, and the initial
chargeα is changed toβ;

(c) [a]αh → []βhb whereh ∈ H , α, β ∈ {+,−, 0}, a, b ∈ O (send-out communication
rules). An object is sent out of the membrane, possibly modified, and the initial
chargeα is changed toβ;

(d) [a]αh → b whereh ∈ H , α ∈ {+,−, 0}, a, b ∈ O (dissolution rules). A membrane
with a specific charge is dissolved in reaction with a (possibly modified) object;

(e) [a]αh → [b]βh [c]γh whereh ∈ H , α, β, γ ∈ {+,−, 0}, a, b, c ∈ O (division rules).
A membrane is divided into two membranes. The objects insidethe membrane are
replicated, except fora, that may be modified in each membrane.

Rules are applied according to the following principles:

• All the elements which are not involved in any of the operations to be applied
remain unchanged.

• Rules associated with labelh are used for all membranes with this label, no matter
whether the membrane is an initial one or whether it was generated by division
during the computation.

• Rules from (a) to (e) are used as usual in the framework of membrane computing,
i.e. in a maximal parallel way. In one step, each object in a membrane can only be
used by at most one rule (non-deterministically chosen), but any object which can
evolve by a rule must do it (with the restrictions indicated below).

158 A P-Lingua Programming Environment for Membrane Computing

• Rules (b) to (e) cannot be applied simultaneously in a membrane in one computa-
tion step.

• An objecta in a membrane labelled withh and with chargeα can trigger a division,
yielding two membranes with labelh, one of them having chargeβ and the other
one having chargeγ. Note that all the contents present before the division, except
for objecta, can be the subject of rules in parallel with the division. Inthis case
we consider that in a single step two processes take place: “first” the contents are
affected by the rules applied to them, and “after that” the results are replicated into
the two new membranes.

• If a membrane is dissolved, its content (multiset and interior membranes) becomes
part of the immediately external one. The skin is never dissolved.

The so-called recognizer P systems were introduced in [6], and constitute the natural
framework to study the solvability of decision problems, since deciding whether an in-
stance has an affirmative or negative answer is equivalent todeciding if a string belongs
or not to the language associated with the problem.

In the literature, recognizer P systems are associated in a natural way with P systems
with input. The data related to an instance of the decision problem has to be provided to
the P system in order for it to compute the appropriate answer. This is done by codifying
each instance as a multiset placed in aninput membrane. The output of the computation,
yes or no, is sent to the environment.

A P system with inputis a tuple (Π, Σ, i
Π

), where: (a)Π is a P system, with working
alphabetΓ, with p membranes labelled by1, . . . , p, and initial multisetsω1, . . . , ωp

associated with them; (b)Σ is an (input) alphabet strictly contained inΓ; the initial
multisets are overΓ \ Σ; and (c)i

Π
is the label of a distinguished (input) membrane.

For each multiset,m, overΣ, the initial configurationof (Π, Σ, iΠ) with input m is
(µ, ω1, . . . , ωi

Π
+ m, . . . , ωp).

A recognizer P systemis a P system with input, (Π, Σ, i
Π

), and with external output
such that:

(a) The working alphabet contains two distinguished elements,yes andno.

(b) All computations halts.

(c) If C is a computation ofΠ, then either the objectyes or the objectno (but no
both) must have been released into the environment, and onlyin the last step of the
computation.

We say thatC is an accepting computation (respectively, rejecting computation) if the
objectyes (respectively,no) appears in the external environment associated with the
corresponding halting configuration ofC.

A P-Lingua Programming Environment for Membrane Computing 159

3 The P-Lingua programming language

A programming language is an artificial language that can be used to control the behav-
ior of a machine, particularly a computer, but it can be used also to define a model of a
machine that can be translated into an executable representation by a simulation tool.

Programming languages are defined by syntactic and semanticrules which describe
their structure and their meaning, respectively.

The P-Lingua programming language intends to define a broad variety of P system mod-
els. At the present stage, P-Lingua can only define P systems with active membranes,
but other models will be added to the language specification in future works.

What follows is the syntax of the language for P systems with active membranes (orig-
inally presented at [1]).

3.1 Valid identifiers We say that a sequence of characters forms avalid iden
tifier if it does not begin with a numeric character and it is composed by characters
from the following:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9

Valid identifiers are widely used in the language: to define module names, parameters,
indexes, membrane labels and alphabet objects.

The following text strings are reserved words in the language: def, call, @mu,
@ms, main, -->, # and they cannot be used as valid identifiers.

3.2 Identifiers for electrical charges In P-Lingua, we can consider electrical charges
by using the+ and- symbols for positive and negative charges, respectively, and no one
for neutral charge. It is worth mentioning that polarizationless P systems are included.

3.3 Variables Two kind of variables are permitted in P-Lingua:

• indexes

• Parameters

Variables are used to store numeric values and their names are valid identifiers. We use
32 bits (signed), this allows a range from−231 to 231 − 1.

160 A P-Lingua Programming Environment for Membrane Computing

3.4 Numeric expressions Numeric expressions can be written by using the* (mul-
tiplication),/ (division),%(modulo),+ (addition),- (subtraction) operators with integer
numbers or variables, along with the use of parentheses.

3.5 Objects The objects of the alphabet of a P system are written using valid iden-
tifiers, and the inclusion of sub-indexes is permitted. For example,xi,2n+1 andY es are
written asx{i,2 * n+1} andYes, respectively.

The multiplicity of an object is represented by using the* operator. For example,x2n+1
i

is written asx{i }* (2 * n+1) .

3.6 Modules definition Similarities between various solutions toNP-complete nu-
merical problems by using families of recognizer P systems are discussed in [4]. Also,
a cellular programming language is proposed based on libraries of subroutines. Using
these ideas, a P-Lingua program consists of a set of programming modules that can be
used more times by the same, or other, programs.

The syntax to define a module is the following.

def module_name(param1,..., paramN)
{

sentence0;
sentence1;
...
sentenceM;

}

The name of a module,module name, must be a valid and unique identifier. The
parameters must be valid identifiers and cannot appear repeated. It is possible to define
a module without parameters. Parameters have a numerical value that is assigned at the
module call (see below).

All programs written in P-Lingua must contain amain module without parameters.
The compiler will look for it when generating the XML file.

In P-Lingua there are sentences to define the membranes configuration of a P system,
to specify multisets, to define rules and to make calls to other modules. Next, let us see
how such sentences are written.

3.7 Module calls In P-Lingua, modules are executed by using calls. The formatof
a sentence that calls a module for some specific values of its parameters is given next:

call module name(value1, ..., valueN);

A P-Lingua Programming Environment for Membrane Computing 161

wherevalue i is an integer number or a variable.

3.8 Definition of the initial membrane structure of a P system In order to define
the initial membrane structure of a P system, the following sentence must be written:

@mu = expr;

whereexpr is a sequence of matching square brackets representing the membrane
structure, including some identifiers that specify the label and the electrical charge of
each membrane.

Examples:

1. [[]02]
0
1 ≡@mu= [[]’2]’1

2. [[]0b []
−
c]+a ≡@mu= +[[]’b, -[]’c]’a

3.9 Definition of multisets The next sentence defines the initial multiset associated
to the membrane labelled bylabel .

@ms(label) = list of objects;

where label is a valid identifier or a natural number that represents a label of the
structure of membranes andlist of objects is a comma-separated list of objects.
The character# is used to represent the empty multiset.

3.10 Union of multisets P-Lingua allows to define the union of two multisets (recall
that the input multiset isaddedto the initial multiset of the input membrane) by using a
sentence with the following format.

@ms(label) += list of objects;

3.11 Definition of rules

1. The format to defineevolution rulesof type[a → v]αh is given next:
α[a --> v]’h

2. The format to definesend-in communication rulesof typea []αh → [b]βh is given
next:
aα[]’h --> β[b]

3. The format to definesend-out communication rulesof type [a]αh → b[]βh is given
next:

162 A P-Lingua Programming Environment for Membrane Computing

α[a]’h --> β[]b

4. The format to definedivision rulesof type[a]αh → [b]βh[c]γh is given next:
α[a]’h --> β[b] γ[c]

5. The format to definedissolution rulesof type[a]αh → b is given next:
α[a]’h --> b

where:

• α, β andγ are identifiers for electrical charges;
• a, b andc are objects of the alphabet;
• v is a comma-separated list of objects that represents a multiset;
• h is a label (the symbol’ always precedes a label name).

Some examples:

• [xi,1 → r4
i,1]

+
2 ≡ +[x {i,1 } --> r {i,1 }* 4]’2

• dk[]02 → [dk+1]
0
2 ≡ d{k}[]’2 --> [d {k+1 }]

• [dk]+2 → []02dk ≡ +[d {k}]’2 --> []d {k}
• [dk]02 → [dk]+2 [dk]−2 ≡ [d {k}]’2 --> +[d {k}]-[d {k}]
• [a]−2 → b ≡ -[a]’2 --> b

3.12 Parametric sentences In P-Lingua, it is possible to define parametric sen-
tences by using the next format:

sentence : range1, ..., rangeN;

wheresentence is a sentence of the language, or a sequence of sentences in brackets,
andrange1, ..., rangeN is a comma-separated list of ranges with the format:

min value <= index <= max value

wheremin value andmax value are numeric expressions, integer numbers or vari-
ables, andindex is a variable that can be used in the context of the sentence. It is
possible to use the operator< instead of<=.

The sentence will be repeated for each possible values of each index .

Some examples of parametric sentences:

A P-Lingua Programming Environment for Membrane Computing 163

1. [dk]02 → [dk]+2 [dk]−2 : 1 ≤ k ≤ n ≡
[d {k}]’2 --> +[d {k}]-[d {k}] : 1<= k <= n;

2. [xi,j → xi,j−1]
+
2 : 1 ≤ i ≤ m, 2 ≤ j ≤ n ≡

+[x {i,j } --> x {i,j-1 }]’2 : 1<=i<=m,2<=j<=n;

3.13 Inclusion of comments The programs in P-Lingua can be commented by writ-
ing phrases into the text strings/ * and* / .

4 Implementation of a solution to SAT

In this section, we present a solution to theSAT problem using recognizer P systems
with active membranes, given by M.J. Pérez–Jiménez et al.[7].

For each(m, n) ∈ N2, we consider the P system(Π(〈m, n〉), Σ(m, n), i(m, n)), where

• Σ(m, n) = {xi,j , x̄i,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
• i(m, n) = 2

• Π(〈m, n〉) = (Γ(m, n), {1, 2}, [[]2]1, w1, w2, R), is defined as follows:

∗ Γ(m, n) = Σ(m, n) ∪ {ck : 1 ≤ k ≤ m + 2} ∪
{dk : 1 ≤ k ≤ 3n + 2m + 3} ∪
{ri,k : 0 ≤ i ≤ m, 1 ≤ k ≤ m + 2} ∪ {e, t} ∪ {Y es, No}

∗ w1 = ∅
∗ w2 = {d1}
∗ The set of rules,R, is given by:

{[dk]02 → [dk]+2 [dk]−2 : 1 ≤ k ≤ n}
{[xi,1 → ri,1]

+
2 , [x̄i,1 → ri,1]

−
2 : 1 ≤ i ≤ m}

{[xi,1 → λ]−2 , [x̄i,1 → λ]+2 : 1 ≤ i ≤ m}
{[xi,j → xi,j−1]

+
2 , [xi,j → xi,j−1]

−
2 : 1 ≤ i ≤ m, 2 ≤ j ≤ n}

{[x̄i,j → x̄i,j−1]
+
2 , [x̄i,j → x̄i,j−1]

−
2 : 1 ≤ i ≤ m, 2 ≤ j ≤ n}

{[dk]+2 → []02dk, [dk]−2 → []02dk : 1 ≤ k ≤ n}
{dk[]02 → [dk+1]

0
2 : 1 ≤ k ≤ n− 1}

{[ri,k → ri,k+1]
0
2 : 1 ≤ i ≤ m, 1 ≤ k ≤ 2n− 1}

{[dk → dk+1]
0
1 : n ≤ k ≤ 3n− 3}; [d3n−2 → d3n−1e]

0
1

164 A P-Lingua Programming Environment for Membrane Computing

e[]02 → [c1]
+
2 ; [d3n−1 → d3n]01

{[dk → dk+1]
0
1 : 3n ≤ k ≤ 3n + 2m + 2}

[r1,2n]+2 → []−2 r1,2n ; {[ri,2n → ri−1,2n]−2 : 1 ≤ i ≤ m}
r1,2n[]−2 → [r0,2n]+2

{[ck → ck+1]
−
2 : 1 ≤ k ≤ m}

[cm+1]
+
2 → []+2 cm+1 ; [cm+1 → cm+2t]

0
1

[t]01 → []+1 t ; [cm+2]
+
1 → []−1 Y es ; [d3n+2m+3]

0
1 → []+1 No

4.14 Implementation The following is the code of the program written in P-Lingua
that specifies a family of P systems solving theSAT problem.

Objects of the form̄xi,j are written asnx{i,j }.

/ * Module that defines a family of recognizer P systems
to solve the SAT problem * /

def Sat(m,n)
{

/ * Initial configuration * /
@mu = [[]’2]’1;

/ * Initial multisets * /
@ms(2) = d{1};

/ * Set of rules * /
[d{k}]’2 --> +[d{k}]-[d{k}] : 1 <= k <= n;

{
+[x{i,1} --> r{i,1}]’2;
-[nx{i,1} --> r{i,1}]’2;
-[x{i,1} --> #]’2;
+[nx{i,1} --> #]’2;

} : 1 <= i <= m;

{
+[x{i,j} --> x{i,j-1}]’2;
-[x{i,j} --> x{i,j-1}]’2;
+[nx{i,j} --> nx{i,j-1}]’2;
-[nx{i,j} --> nx{i,j-1}]’2;

} : 1<=i<=m, 2<=j<=n;

{
+[d{k}]’2 --> []d{k};
-[d{k}]’2 --> []d{k};

} : 1<=k<=n;

d{k}[]’2 --> [d{k+1}] : 1<=k<=n-1;

A P-Lingua Programming Environment for Membrane Computing 165

[r{i,k} --> r{i,k+1}]’2 : 1<=i<=m, 1<=k<=2 * n-1;
[d{k} --> d{k+1}]’1 : n <= k<= 3 * n-3;
[d{3 * n-2} --> d{3 * n-1},e]’1;
e[]’2 --> +[c{1}];
[d{3 * n-1} --> d{3 * n}]’1;
[d{k} --> d{k+1}]’1 : 3 * n <= k <= 3 * n+2* m+2;
+[r{1,2 * n}]’2 --> -[]r{1,2 * n};
-[r{i,2 * n} --> r{i-1,2 * n}]’2 : 1<= i <= m;
r{1,2 * n}-[]’2 --> +[r{0,2 * n}];
-[c{k} --> c{k+1}]’2 : 1<=k<=m;
+[c{m+1}]’2 --> +[]c{m+1};
[c{m+1} --> c{m+2},t]’1;
[t]’1 --> +[]t;
+[c{m+2}]’1 --> -[]Yes;
[d{3 * n+2* m+3}]’1 --> +[]No;

} / * End of Sat module * /

/ * Main module * /
def main()
{

/ * Call to Sat module for m=4 and n=6 * /
call Sat(4,6);
/ * Expansion of the input multiset * /
@ms(2) += x{1,1}, nx{1,2}, nx{2,2}, x{2,3},

nx{2,4}, x{3,5}, nx{4,6};
} / * End of main module * /

The modulemain is instantiated with the formula

ϕ ≡ (x1 + x2)(x2 + x3 + x4)x5 x6

wheren = 6, m = 4 and the input multiset:x1,1, x1,2, x2,2, x2,3, x2,4, x3,5, x4,6.

5 The compilation tool

Programming languages are associated with compilation tools, which are computer pro-
grams that translate text written in a programming languageinto another language. The
original text is usually called thesource codewhereas the output is called theobject
code. Commonly the output has a form suitable for being processedby other programs
or for being executed by the computer, but it may as well be a human-readable text file.

We have developed a compilation tool that is able to translate programs written in P-
lingua into XML documents, after having assigned values to some initial parameters.
Moreover, plugins can be designed and added to produce object code with different
formats.

166 A P-Lingua Programming Environment for Membrane Computing

Recall that a P-lingua program can encode a family of P systems (with the help of some
parameters) in a flexible manner, whereas the object code generated by the compilation
tool specifies only a single P system of the family. In this way, the applications that
accept that object code do not need to process parametric systems, and hence their
implementation is much easier.

The eXtensibleMarkupLanguage (XML) is a general-purpose specification for creat-
ing custom markup languages. It is classified as an extensible metalanguage because
it allows the users to define their own elements. Its primary purpose is to facilitate the
sharing of structured data across different information systems. It is worth mentioning
that the SBML (Systems Biology Markup Language) is a XML language encoding the
main components of biochemical networks. It is used by several existing simulators for
P systems (see the software link at [11]).

The complete syntax of the XML language generated by the compilation tool for P
systems with active membranes can be found at [1].

The tool may be executed from the command line as follows:

plingua input file -xml output file [-v verbosity level] [-h]

The text fileinput file contains the program (written in P-lingua) that we want to be
compiled, andoutput file is the name of the XML file that is generated. Optional
arguments are in brackets: the option-v verbosity level is a number between
0 and 5 indicating the level of detail of the messages shown during the compilation
process, and the option-h displays some help information.

6 An integrated development environment

An integrated development environment (IDE) is a software application that provides
comprehensive facilities to computer programmers for software development. Usually,
an IDE consists of a source code editor, a compiler and/or interpreter, a debugger, and
other useful tools.

Typically an IDE is devoted to a specific programming language, so as to provide a
feature set which most closely matches the programming paradigms of the language. In
this sense, we have developed an IDE for P-Lingua by using theJava language. This
application provides an environment to write and debug programs in P-Lingua for P
systems with active membranes, and it can be updated by adding plugins to accept future
versions of the language. The IDE can also be used as a simulation tool for P-Lingua
programs.

This application includes a source code editor with syntax highlighting which is a fea-
ture that displays text source code in different colors and fonts, as both structures and

A P-Lingua Programming Environment for Membrane Computing 167

syntax errors are visually distinct. With this editor, it isalso possible to generate P-
Lingua programs composed of several single files.

A compilation tool is included to check possible programming errors and to generate
XML files that can be used in third-part applications.

A simulation tool for debugging is included in order to aid the researcher in the task of
designing new P systems. This tool provides simulations by using an interactive step-
by-step mode. The user can choose between simulation of one or several steps, or let
the simulation run until a halting state. A lot of information is given in each step of
the simulation: a tree-view of the membranes structure, complete information of the
multisets and the set of rules selected to be executed. The user can also choose between
different non-deterministic ways of computation, or let the software select one.

7 A simulator for recognizer P systems with active
membranes

The act of simulating generally entails representing certain key characteristics or be-
haviors of some physical, or abstract, system. We must distinguish a simulation tool
from an emulation tool: this duplicates the functions of onesystem by using a different
system, so that the second system behaves like (and appears to be) the emulated system.
With the current technology, we cannot emulate the functionality of a cellular machine
(a membrane system) by using a conventional computer to solve instances ofNP-hard
problems in a polynomial time, but we can simulate these cellular machines for research
purposes, even if the simulation is not done in a polynomial time.

The P system computations are massively parallel. One of themost common program-
ming methods to simulate real parallelism in a conventionalcomputer with a single pro-
cessor is to use multithreading. A thread in this sense is a thread of execution. Threads
are a way for a program to fork (or split) itself into two or more simultaneously (or
pseudo-simultaneously) running tasks. Multiple threads can be executed in parallel on
a single computer. This multithreading generally occurs bytime-division multiplexing
where the processor switches between different threads. This context switching can
happen so fast as to give the illusion of parallelism to an end-user. On a multiprocessor
or multi-core system, threading can be achieved via multiprocessing, wherein different
threads can literally run simultaneously on different processors or cores.

As a first practical application of the P-lingua programminglanguage, we have imple-
mented a simulator for recognizer P systems with active membranes that takes as input
an XML document generated by the P-lingua compiler and runs one of the possible
computations that the P system may follow, obtaining the answer that the system outputs
to its environment, and a text file with a detailed step-by-step report of the computation.

The system requirements are the same as in the case of the P-lingua compiler.

168 A P-Lingua Programming Environment for Membrane Computing

The simulator is launched from the command line as follows:

plingua sim input xml [-o output file]

where input xml is an XML document formatted as discussed in this paper, and
output file is the name of the file where the report about the simulated computation
will be saved.

7.15 Simulation of a solution to the SAT problem We now show an execution
of the simulator running on the XML document obtained after compiling the P-lingua
program described in Section 4.14. The results have been obtained on an AMD Sempron
machine, at 2.8 Ghz and with 512Mb of RAM memory.

The command used to execute the simulation is:

plingua sim sat.xml -o info.txt

The simulation ends when no more rules can be applied, and then the following infor-
mation is displayed:

Environment multiset: t, Yes
Steps: 41
Time: 1.971 s.
Halting configuration (No rule can be selected to be execute d

in the next step)

Thus, the computation of the P system spend 41 transition steps, and it took 1.971 sec-
onds to simulate it until reaching a halting configuration (recall that we are simulating
a parallel device on a sequential computer).

The file info.txt keeps detailed information about each configuration of the simu-
lated computation. More precisely, the multisets and polarizations of all the membranes
are listed, as well as the rules selected for execution at each transition step. The config-
urations are numbered (starting at 0), to keep track of the step of the computation that is
being simulated. Some information about the CPU time is shown for each step, and the
number of rules of each type that is executed. As an example, we give the information
generated for the first two configurations.

MEMBRANE ID: 1, Label: 2, Charge: 0
Multiset: nx{1, 2}, d{1}, x{3, 5}, nx{2, 4}, nx{2, 2},

nx{4, 6}, x{2, 3}, x{1, 1}
Parent Membrane ID: 0
Rules Selected:
1* DIVISION RULE: [d{1}]’2 --> +[d{1}] -[d{1}]

A P-Lingua Programming Environment for Membrane Computing 169

@@@ SKIN MEMBRANE ID: 0, Label: 1, Charge: 0
Multiset: #
Internal membranes count: 1

Configuration: 0
Time: 0.0 s.
1 division rule(s) selected to be executed in the step 1
**
MEMBRANE ID: 1, Label: 2, Charge: +

Multiset: nx{1, 2}, d{1}, x{3, 5}, nx{2, 4}, nx{2, 2},
nx{4, 6}, x{2, 3}, x{1, 1}

Parent Membrane ID: 0
Rules Selected:
1* EVOLUTION RULE: +[nx{2, 2} --> nx{2, 1}]’2
1* EVOLUTION RULE: +[nx{1, 2} --> nx{1, 1}]’2
1* EVOLUTION RULE: +[x{3, 5} --> x{3, 4}]’2
1* EVOLUTION RULE: +[x{1, 1} --> r{1, 1}]’2
1* EVOLUTION RULE: +[nx{2, 4} --> nx{2, 3}]’2
1* EVOLUTION RULE: +[nx{4, 6} --> nx{4, 5}]’2
1* EVOLUTION RULE: +[x{2, 3} --> x{2, 2}]’2
1* SEND-OUT RULE: +[d{1}]’2 --> []d{1}

MEMBRANE ID: 2, Label: 2, Charge: -
Multiset: nx{1, 2}, d{1}, nx{2, 4}, x{3, 5}, nx{2, 2},

x{2, 3}, nx{4, 6}, x{1, 1}
Parent Membrane ID: 0
Rules Selected:
1* EVOLUTION RULE: -[nx{2, 4} --> nx{2, 3}]’2
1* EVOLUTION RULE: -[nx{2, 2} --> nx{2, 1}]’2
1* EVOLUTION RULE: -[nx{4, 6} --> nx{4, 5}]’2
1* EVOLUTION RULE: -[x{1, 1} --> #]’2
1* EVOLUTION RULE: -[x{2, 3} --> x{2, 2}]’2
1* EVOLUTION RULE: -[nx{1, 2} --> nx{1, 1}]’2
1* EVOLUTION RULE: -[x{3, 5} --> x{3, 4}]’2
1* SEND-OUT RULE: -[d{1}]’2 --> []d{1}

@@@ SKIN MEMBRANE ID: 0, Label: 1, Charge: 0
Multiset: #
Internal membranes count: 2

Configuration: 1
Time: 0.025 s.
14 evolution rule(s) selected to be executed in the step 2
2 send-out rule(s) selected to be executed in the step 2
**

After simulating 41 transition steps, the halting configuration is described as follows:

MEMBRANE ID: 1, Label: 2, Charge: +
Multiset: r{0, 12} * 3, c{4}
Parent Membrane ID: 0

170 A P-Lingua Programming Environment for Membrane Computing

MEMBRANE ID: 2, Label: 2, Charge: +
Multiset: c{1}, r{2, 12}, r{3, 12}
Parent Membrane ID: 0

MEMBRANE ID: 3, Label: 2, Charge: +
Multiset: r{0, 12} * 5, c{4}
Parent Membrane ID: 0

MEMBRANE ID: 4, Label: 2, Charge: +
Multiset: r{0, 12} * 4, c{4}
Parent Membrane ID: 0

MEMBRANE ID: 5, Label: 2, Charge: +
Multiset: r{0, 12}, r{2, 12}, c{2}
Parent Membrane ID: 0

MEMBRANE ID: 6, Label: 2, Charge: +
Multiset: c{1}, r{3, 12}
Parent Membrane ID: 0

MEMBRANE ID: 7, Label: 2, Charge: +
Multiset: 4 * r{0, 12}, c{4}
Parent Membrane ID: 0

...

@@@ SKIN MEMBRANE ID: 0, Label: 1, Charge: -
Multiset: t * 10, d{29} * 64, c{6} * 10
Internal membranes count: 64

˜˜˜ENVIRONMENT: t, Yes

Configuration 41
Time: 1.971 s.
Halt configuration (No rule can be selected to be
executed in the next step)

**

Note that there are 64 different membranes labelled by 2 in this configuration, although
for the sake of simplicity we show only seven of them.

8 Conclusions and future work

In this paper we have presented a programming language for membrane computing,
P-Lingua, together with a compiler that generates XML documents, an integrated de-
velopment environment and a simulator for a class of P systems, namely recognizer P
systems with active membranes.

A P-Lingua Programming Environment for Membrane Computing 171

Using a programming language to define cellular machines is aconcept in the develop-
ment of applications for membrane computing that leads to a standardization with the
following advantages:

• Users can define cellular machines in a modular and parametric way by using an
easy-to-learn programming language.

• It is possible to define libraries of modules that can be shared among users to
facilitate the design of new programs.

• This method to define P systems is decoupled from its applications and the same
P-Lingua programs can be used in different software environments.

• By using compiling tools, the P-Lingua programs are translated to other file for-
mats that can be interpreted by a large number of different applications.

The first version of P-Lingua is presented for P systems with active membranes. In forth-
coming versions, we will try to generalize the language so that other types of cellular
devices can be also defined, for instance transition P systems and tissue P systems. In
this sense, necessary plugins (software modules) for the IDE and the compilation tool
must be developed also.

We have chosen an XML language as the output format because ofthe reasons exposed
above. However, we are aware that for some applications it isnot the most suitable
format, due to the fact that XML does not include any method for compressing data, and
therefore the text files can eventually become too large, which is a clear disadvantage
for applications running on networks of processors. It would be convenient to improve
the compiler (by adding plugins) so that it generates a larger variety of output formats,
of special interest are compressed binary files or executable code (either in C or Java).

It is important to recall that the simulator presented here is designed to run in a conven-
tional computer, having limited resources (RAM, CPU), and this leads to a bound on the
size of the instances of computationally hard problems whose solutions can be success-
fully simulated. Moreover, conventional computers are notmassively parallel devices,
and therefore it seems that the inherent parallelism of P systems must be simulated by
means of multithreading techniques. It would be interesting to design heuristics which
help us to find good (short) computations.

These shortcomings lead us to the possibility of implementing a distributed simulator
running on a network or cluster of processors, where the needof resources arising during
the computation could be solved by adding further nodes to the network, thus moving
towards massive parallelism.

The sofware presented in this paper and its source code can befreely downloaded from
thesoftwaresection on the website [12]. This software is under the GNU General Public
License (GNU GPL) [8] and it is written in Java [9] using the lexical and syntactical

172 A P-Lingua Programming Environment for Membrane Computing

analyzers provided by JavaCC [10]. The minimum system requirements are having a
Java virtual machine (JVM) version 1.6.0 running in a Pentium III computer.

Acknowledgments. The authors acknowledge the support of the project TIN2006-
13425 of the Ministerio de Educación y Ciencia of Spain, cofinanced by FEDER funds,
as well as the support of the project of excellence TIC-581 ofthe Junta de Andalucı́a.

Bibliography

[1] D. Dı́az–Pernil, I. Pérez–Hurtado, M.J. Pérez–Jiménez, A. Riscos–Núñez. P-Lingua:
A programming Language for Membrane Computing. In Daniel D´ıaz–Pernil, M.A.
Gutiérrez–Naranjo, C. Graciani–Dı́az, Gh. Păun, I. Pérez–Hurtado, A. Riscos–
Núñez (eds)Proceedings of the 6th Brainstorming Week on Membrane Comput-
ing, Sevilla, Fénix Editora, (2008), 135–155.

[2] R. Freund, S. Verlan. A Formal Framework for Static (Tissue) P Systems.Lecture
Notes in Computer Science, 4860(2007), 271-284.

[3] M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez, A. Riscos–Núñez. Available Mem-
brane Computing Software. In G. Ciobau, Gh. Păun, M.J. Péréz–Jiménez (eds.)
Applications of Membrane Computing, Natural Computing Series, Springer–Verlag,
2006. Chapter15 (2006), pp. 411–436.

[4] M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez, A. Riscos–Núñez. Towards a pro-
gramming language in cellular computing.Electronic Notes in Theoretical Com-
puter Science, Elsevier B.V.,123(2005), 93–110.

[5] Gh. Păun. Computing with membranes.Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for Computer Science-TUCS Report No
208.

[6] M.J. Pérez-Jiménez, A. Romero–Jiménez, F. Sancho–Caparrini. Complexity classes
in cellular computing with membranes.Natural Computing, 2, 3 (2003), 265-285.

[7] M.J. Pérez–Jiménez, A. Romero–Jiménez, F. Sancho–Caparrini. A polynomial
complexity class in P systems using membrane division.Journal of Automata,
Languages and Combinatorics, 11, 4 (2006), 423-434.

[8] The GNU General Public License:http://www.gnu.org/copyleft/gpl.
html

[9] Java web page:http://www.java.com/
[10] JavaCC web page:https://javacc.dev.java.net/
[11] P systems web page:http://ppage.psystems.eu/
[12] Research Group on Natural Computing web page:http://www.gcn.us.es/

On Testing P Systems

———————————————
Marian Gheorghe1, Florentin Ipate2

1The University of Sheffield, Department of Computer Science,
Regent Court, Portobello Street, Sheffield S1 4DP, UK
M.Gheorghe@dcs.shef.ac.uk

2The University of Pitesti, Department of Computer Science,
Str Targu din Vale 1, 110040 Pitesti, Romania
florentin.ipate@ifsoft.ro

This paper presents a basic framework to define testing strategies for some
classes of P systems. Techniques based on grammars and finitestate machines
are developed and some testing criteria are identified and illustrated through
simple examples.

1 Introduction

In 1998, Gheorghe Păun initiated the field of research called membrane computingwith
a paper firstly available on the web [16]. Membrane computing, a new computational
paradigm, aims at defining computational models which are inspired by the function-
ing and structure of the living cell. In particular, membrane computing starts from the
observation that compartmentalisation through membranesis one of the essential fea-
tures of (eucaryotic) cells. Unlike bacterium, which generally consists of a single in-
tracellular compartment, an eucaryotic cell is sub-divided into distinct compartments
with well-defined structures and functions. Further on havebeen considered other bi-
ological phenomena like tissues, colonies of different organisms, various bio-chemical
entities with dynamic structure in time and space. Membranesystems, also calledP
systems, consist now of different computational models addressingmultiple levels of
bio-complexity. There arecell-like P systems, relying on the hierarchical structure of
the living cells,tissue-like models, reflecting the network structure of neurons and other
bio-units arranged in tissues or more complex organs,P coloniesandpopulation P sys-
tems, drawing inspiration from the organisation and behaviour of bacterium colonies,
social insects and other organisms living together in larger communities (see [18], [19]).

The most basic model and the first introduced, [17], the cell-like paradigm has three
essential features: (i) amembrane structureconsisting of a hierarchical arrangement of
several compartments, calledregions, delimited bymembranes; (ii) objectsoccurring
inside these regions, coding for various simple or more complex chemical molecules

174 On Testing P Systems

or compounds; and (iii)rulesassigned to the regions of the membrane structure, acting
upon the objects inside. In particular, each region is supposed to contain a finite set of
rules and a finite multiset (or set) of objects. Rules encode for generic transformation
processes involving objects and for transporting them, through membranes, from one re-
gion to an adjacent one. The application of the rules is performed in a non-deterministic
maximally parallel manner: all the applicable rules that can be used to modify or trans-
port existing objects, must be applied, and this is done in parallel for all membranes.
This process abstracts the inherent parallelism that occurs at the cellular level.

Since this model has been introduced for the first time in 1998, many variants of mem-
brane systems have been proposed, a research monograph [18]has been published and
regular collective volumes are annually edited – a comprehensive bibliography of P
systems can be found at [19]. The most investigated membranecomputing topics are
related to the computational power of different variants, their capabilities to solve hard
problems, like NP-complete ones, decidability, complexity aspects and hierarchies of
classes of languages produced by these devices. In the last years there have been sig-
nificant developments in using the P systems paradigm to model, simulate and formally
verify various systems [7]. For some of these applications suitable classes of P systems
have been associated with and software packages developed.For these models corre-
sponding formal semantics [1] and verification mechanisms [2] have been produced.

There are well-established application areas where the software specifications devel-
oped are also delivered together with a model and associatedformal verification proce-
dures. All software applications, irrespective of their use and purpose, are tested before
being released, installed and used. Testing is not a replacement for a formal verifica-
tion procedure, when the former is also present, but a necessary mechanism to increase
the confidence in software correctness and ultimately a well-known and very well-
established stage in any software engineering project [10]. Although formal verification
has been applied for different models based on P systems, testing has been completely
neglected so far in this context. In this paper we suggest some initial steps towards
building a testing framework and its underpinning theory, based on formal grammars
and finite state machines, that is associated to software applications derived from P
systems specifications. We develop this testing theory based on formal grammars and
finite state machines as they are the closest formalisms to P systems and the testing
mechanisms for them are well-investigated. Of course othertesting approaches can be
considered in this context as well, but all of them require a bigger effort of translation
and inevitably difficulties in checking the correctnes of this process and in mapping it
back to P systems.

The paper is organised as follows: in section 2 there are introduced basic concepts and
definitions; a testing framework based on context-free grammars and finite state ma-
chines is built and some examples presented in sections 3 and4, respectively; conclu-
sions are drawn in section 5.

On Testing P Systems 175

2 Basic Concepts and Notations

For an alphabetV = {a1, ..., ap}, V ∗ denotes the set of all strings overV . λ denotes
the empty string. For a stringu ∈ V ∗, |u|ai

denotes the number ofai occurrences inu.
For a stringu we associate a vector of non-negative integer values(|u|a1 , ..., |u|ap

). We
denote this byΨV (u).

A basic cell-like P system is defined as a hierarchical arrangement of membranes iden-
tifying corresponding regions of the system. With each region there are associated a
finite multiset of objects and a finite set of rules; both may beempty. A multiset is ei-
ther denoted by a stringu ∈ V ∗, where the order is not considered, or byΨV (u). The
following definition refers to one of the many variants of P systems, namely cell-like P
system, which uses non-cooperative transformation and communication rules [18]. We
will call these processing rules. Since now onwards we will call this model simply P
system.

Definition 1 A P systemis a tupleΠ = (V, µ, w1, ..., wn, R1, ..., Rn), where

• V is a finite set, calledalphabet;
• µ defines the membrane structure; a hierarchical arrangementof n compartments

called regionsdelimited bymembranes; these membranes and regions are identi-
fied by integers 1 ton;

• wi, 1 ≤ i ≤ n, represents the initial multiset occurring in regioni;
• Ri, 1 ≤ i ≤ n, denotes the set of rules applied in regioni.

The rules in each region have the forma → (a1, t1)...(am, tm), wherea, ai ∈ V ,
ti ∈ {in, out, here}, 1 ≤ i ≤ m. When such a rule is applied to a symbola in the
current region, the symbola is replaced by the symbolsai with ti = here; symbols
ai with ti = out are sent to the outer region and symbolsai with ti = in are sent
into one of the regions contained in the current one, arbitrarily chosen. In the following
definitions and examples all the symbols(ai, here) are used asai. The rules are applied
in maximally parallel mode which means that they are used in all the regions in the
same time and in each region all symbols that may be processed, must be.

A configuration of the P systemΠ is a tuplec = (u1, ..., un), ui ∈ V ∗, 1 ≤ i ≤ n. A
derivation of a configurationc1 to c2 using the maximal parallelism mode is denoted by
c1 =⇒ c2. In the set of all configurations we will distinguish terminal configurations;
c = (u1, ..., un) is a terminal configuration if there is no regioni such thatui can be
further processed.

The set of all halting configurations is denoted byL(Π), whereas the set of all configu-
rations reachable from the initial one (including the initial configuration) is denoted by
S(Π).

176 On Testing P Systems

Definition 2 A deterministic finite automaton(abbreviatedDFA), M , is a tuple(A, Q,
q0, F, h), where:

• A is the finiteinput alphabet;
• Q is the finiteset of states;
• q0 ∈ Q is theinitial state;
• F ⊆ Q is theset of final states;
• h : Q×A −→ Q is thenext-statefunction.

The next-state functionh can be extended to a functionh : Q×A∗ −→ Q defined by:

• h(q, ǫ) = q, q ∈ Q;

• h(q, sa) = h(h(q, s), a), q ∈ Q, s ∈ A∗, a ∈ A.

For simplicity the same nameh is used for the next-state function and for the extended
function.

Givenq ∈ Q, a sequence of input symbolss ∈ A∗ is said to be accepted byM in q if
h(q, s) ∈ F . The set of all input sequences accepted byM in q0 is called thelanguage
defined (accepted) byM , denotedL(M).

3 Grammar-like Testing

Based on testing principles developed for context-free grammars [13], [14], some test-
ing strategies aiming to achieve rule coverage for a P systemwill be defined and anal-
ysed in this section.

In grammar engineering, formal grammars are used to specify complex software sys-
tems, like compilers, debuggers, documentation tools, code pre-processing tools etc.
One of the areas of grammar engineering isgrammar testingwhich covers the devel-
opment of various testing strategies for software based on grammar specifications. One
of the main testing methods developed in this context refersto rule coverage, i.e., the
testing procedure tries to cover all the rules of a specification.

In the context of grammar testing it is assumed that for a given specification defined as
a grammar, an implementation of it, like a parser, exists andwill be tested. The aim is
to build a test set, a finite set of sequences, that reveals potential errors in the imple-
mentation. As opposed to testing based on finite state machines, where it is possible to
(dis)prove the equivalent behaviour of the specification and implementation, in the case
of general context-free grammars this is no longer possibleas it reduces to the equiv-
alence of two such devices, which is not decidable. Of course, for specific restricted

On Testing P Systems 177

classes of context-free grammars there are decidability procedures regarding the equiv-
alence problem and these may be considered for testing purposes as well, but we are
interested here in the general case. The best we can get is to cover as much as possible
from the languages associated to the two mechanisms, specification and implementation
grammars, and this is the role of a test set. We will define suchtest sets for P systems.

Given a specificationG and an implementationG′, a test set aims to reveal inconsisten-
cies, like

• incorrectnessof the implementationG′ with respect to the specification language
L = L(G), if L(G′) 6⊂ L andL 6= L(G′);

• incompletenessof the implementationG′ with respect to the specification language
L = L(G), if L 6⊂ L(G′) andL 6= L(G′).

We start to develop a similar method in the context of P systems. Although there are a
number of similarities between context-free grammars utilised in grammar testing and
basic P systems, like those considered in this paper, there are also major differences that
pose new problems in defining suitable testing methods. Someof the difficulties that we
encounter in introducing some grammar-like testing procedures are related to the main
features that define such systems: hierarchical compartmentalisation of the entire model,
parallel behaviour, communication mechanisms, the lack ofa non-terminal alphabet.

We define some rule coverage criteria by firstly starting withone compartment P system,
i.e.,Π = (V, µ, w, R), whereµ = [1]1. The rule coverage criteria are adapted from [13],
[14]. In the sequel, if not otherwise stated, we will consider that the specification and
the implementation are given by the P systemsΠ andΠ′, respectively. For such a P
systemΠ, we define the following concepts.

Definition 3 A multiset denoted byu ∈ V ∗, coversa rule r : a → v ∈ R, if there is a
derivationw =⇒∗ xay =⇒ x′vy′ =⇒∗ u; w, x, y, v, u ∈ V ∗, a ∈ V .

If there is no further derivation fromu, then this is called aterminal coverage.

Definition 4 A setT ⊆ V ∗, is called atest setthat satisfies therule coverage(RC)
criterion if for each ruler ∈ R there isu ∈ T which coversr.

If everyu ∈ T provides a terminal coverage thenT is called a test set that satisfies the
rule terminal coverage(RTC) criterion.

The following one compartment P systems are considered,Πi, 1 ≤ i ≤ 4, having the
same alphabet and initial multiset:

178 On Testing P Systems

Πi = (Vi, µi, wi, Ri)

where

• V1 = V2 = V3 = V4 = {s, a, b, c};
• µ1 = µ2 = µ3 = µ4 = [1]1 - i.e., one compartment, denoted by 1;
• w1 = w2 = w3 = w4 = s;
• R1 = {r1 : s→ ab, r2 : a→ c, r3 : b→ bc, r4 : b→ c};
• R2 = {r1 : s→ ab, r2 : a→ λ, r3 : b→ c};
• R3 = {r1 : s→ ab, r2 : a→ bcc, r3 : b→ λ};
• R4 = {r1 : s→ ab, r2 : a→ bc, r3 : a→ c, r4 : b→ c}.

In the sequel for each multisetw, we will use the following vector of non-negative
integer numbers(|w|s, |w|a, |w|b, |w|c).

The sets of all configurations expressed as vectors of non-negative integer numbers,
computed by the P systemsΠi, 1 ≤ i ≤ 4 are:

• S(Π1) = {(1, 0, 0, 0), (0, 1, 1, 0)}∪ {(0, 0, k, n)|k = 0, 1; n ≥ 2};
• S(Π2) = {(1, 0, 0, 0), (0, 1, 1, 0), (0, 0, 0, 1)};
• S(Π3) = {(1, 0, 0, 0), (0, 1, 1, 0), (0, 0, 1, 2), (0, 0, 0, 2)};
• S(Π4) = {(1, 0, 0, 0), (0, 1, 1, 0), (0, 0, 1, 2), (0, 0, 0, 2), (0, 0, 0, 3)}.

Test sets forΠ1 satisfying the RC criterion are

• T1,1 = {(0, 1, 1, 0), (0, 0, 1, 2), (0, 0, 0, 2)} and
• T1,2 = {(0, 1, 1, 0), (0, 0, 1, 2), (0, 0, 0, 3)},

whereasT ′
1,1 = {(0, 1, 1, 0), (0, 0, 0, 2)} andT ′

1,2 = {(0, 1, 1, 0), (0, 0, 1, 2)} are not,
as they do not cover the rulesr3 and r4, respectively. BothT1,1 and T1,2 show the
incompleteness ofΠ2 with respect toS(Π1) (Π2 is also incorrect).T1,1 does not show
the incompleteness ofΠ3 with respect toS(Π1), butT1,2 does. None of these test sets
does show the incompleteness ofΠ4.

The sets of terminal configurations expressed as vectors of non-negative integer num-
bers, computed by the P systemsΠi, 1 ≤ i ≤ 4 are:

• L(Π1) = {(0, 0, 0, n)|n ≥ 2};
• L(Π2) = {(0, 0, 0, 1)};
• L(Π3) = {(0, 0, 0, 2)};
• L(Π4) = {(0, 0, 0, 2), (0, 0, 0, 3)}.

On Testing P Systems 179

A test set forΠ1 satisfying the RTC criterion isT = {(0, 0, 0, 3)}. As (0, 0, 0, 3) is
not in L(Π2) and L(Π3), it follows that Π2 and Π3 are incomplete with respect to
L = L(Π1). However, the test set does not prove the incompleteness ofΠ4.

The examples above show that none of the test sets provided ispowerful enough to
prove the incompleteness ofΠ4, althoughS(Π4) ⊂ S(Π1), andL(Π4) ⊂ L(Π1).

A more powerful testing set is computed by considering a generalisation of the RC
criterion, calledcontext-dependent rule coverage(CDRC) criterion.

Definition 5 A rule r ∈ R, r : b → uav, u, v ∈ V ∗, a, b ∈ V , is called adirect
occurrenceof a. For every symbola ∈ V , we denote byOccs(Π, a), the set of all direct
occurrences ofa.

For the P systemΠ1, the following sets of direct occurrences are computed:

• Occs(Π1, s) = ∅;
• Occs(Π1, a) = {r1 : s→ ab};
• Occs(Π1, b) = {r1 : s→ ab, r3 : b→ bc};
• Occs(Π1, c) = {r2 : a→ c, r3 : b→ bc, r4 : b→ c}.

Definition 6 A multiset denoted byu ∈ L(Π) coversthe rule r : b → y ∈ R for
the direct occurrenceof b, a → ubv ∈ R if there is a derivationw =⇒∗ u1av1 =⇒
u1ubvv1 =⇒ u1uyvv1 =⇒∗ z; z, u1, v1, u, v, y ∈ V ∗, a, b ∈ V. A setTr is said to
coverr : a → x for all direct occurrences ofa if for any occurrenceo ∈ Occs(Π, a)
there ist ∈ Tr such thatt coversr for o. A setT is said to achieve CDRC forΠ if it
covers allr ∈ R for all their direct occurrences.

Clearly,Tr coversr in the sense of Definition 3. Similar to the coverage rule criterion
introduced by Definition 4 where a terminal coverage criterion (RTC) has been given,
we can also extend CDRC by considering only terminal derivations for all z in Defi-
nition 6 and obtain the CDRTC criterion. Obviously, any testset that satisfies CDRC
(CDRTC) criterion will also satisfies RC (RTC) criterion, aswell.

ForΠ1 the set

• T ′ = {(0, 1, 1, 0), (0, 0, 1, 2), (0, 0, 0, 2), (0, 0, 1, 3), (0, 0, 0, 3))} satisfies the
CDRC criterion and

• T ′′ = {(0, 0, 0, 2), (0, 0, 0, 3), (0, 0, 0, 4)} satisfies the CDRTC criterion.

These sets show the incompleteness ofΠ4 as well as the incompleteness of the other
two P systems.

180 On Testing P Systems

In all the above considerations we have considered maximal parallelism. If we consider
sequential P systems, only one rule is used at a moment, then all the above considera-
tions and the same sets remain valid.

Now we consider general P systems, as introduced by Definition 1, and reformulate the
concepts introduced above for one compartment P systems:

• RC criterion becomes: the configuration(u1, ..., ui, ..., un) covers a ruleri : ai →
vi ∈ Ri if there is a derivation
(w1, ..., wi..., wn) =⇒∗ (x1, ..., xiaiyi, ..., xn) =⇒ (x′

1, ..., x
′
iviy

′
i, ..., x

′
n) =⇒∗

(u1, ..., ui, ..., un);
• a test setT ⊆ (V ∗)n is defined similar to Definition 4.

In a P system with more than one compartment, two adjacent regions can exchange
symbols. If the regioni is contained inj andri : a → x(b, out)y ∈ Ri or rj : c →
u(d, in)v ∈ Rj thenri, rj are called communication rules between regionsi andj.

Now Definition 5 can be rewritten as follows

Definition 7 A rule r : b → uav ∈ Ri or a communication rule betweeni and j,
r′ : b′ → u′(a, t)v′ ∈ Rj , wherei andj are two adjacent regions andt ∈ {in, out},
is called a direct occurrence ofa. The set of all direct occurrences ofa in region i
is denoted byOccsi(Π, a) and consists of the set of all direct occurrences ofa from
i, denoted bySi and the sets of communication rules,r′, from the adjacent regions
j1, ..., jq, denoted bySj1 , ..., Sjq

.

Let the two compartment P systems:

Π′
i = (Vi, µi, w1,i, w2,i, R1,i, R2,i)

where

• V1 = V2 = {s, a, b, c};
• µ1 = µ2 = [1[2]2]1 - i.e., two compartments; region 1 contains 2;
• w1,1 = s, w2,1 = λ; w1,2 = s, w2,2 = λ;
• R1,1 = {r1 : s→ sa(b, in), r2 : s→ ab, r3 : b→ a, r4 : a→ c};
• R2,1 = {r1 : b→ bc, r2 : b→ c};
• R1,2 = {r1 : s→ sa(b, in), r2 : s→ ab(b, in)(c, in), r3 : b→ a, r4 : a→ c};
• R2,2 = {r1 : b→ λ, r2 : b→ c}.

For the P systemΠ′
1, the following sets of direct occurrences are computed:

• Occs1(Π1, a) = S1 ∪ S2, whereS1 = {r1 : s → sa(b, out), r2 : s → ab, r3 :
b→ a} andS2 = ∅;

On Testing P Systems 181

• Occs2(Π
′
1, b) = S1 ∪ S2, whereS1 = {r1 : s→ sa(b, out)} andS2 = {r1 : b→

bc}.

A test setT that satisfies the CDRC criterion is:

{((1, 1, 0, 0), (0, 0, 1, 0)), ((0, 1, 1, 1), (0, 0, 1, 1)), ((0, 1, 0, 2), (0, 0, 0, 2)),

((0, 0, 0, 3), (0, 0, 0, 2))},
which is obtained from the derivation

(s, λ) =⇒ (sa, b) =⇒ (bac, bc) =⇒ (acc, cc) =⇒ (ccc, cc).

The P systemΠ′
2 is incomplete as it does not contain configurations(ck, ch) with h > k,

butT above, fails to show this fact.

We can consider the CDRTC criterion to check whether it distinguishes betweenΠ′
1 and

Π′
2. It is left to the reader to verify this fact.

4 Finite State Machine based Testing

In this section we apply concepts and techniques from finite state based testing. In order
to do this, we construct a finite automaton on the basis of the derivation tree of a P
system.

We first present the process of constructing a DFA for a one compartment P system
Π = (V, µ, w, R), whereµ = [1]1. In this case, the configuration ofΠ can change as a
result of the application of some rule inR or of a number of rules, in parallel. In order
to guarantee the finiteness of this process, for a given integer k, only computations of
maximumk steps will be considered. For example, fork = 4, the tree in Figure 4.1
depicts all derivations inΠ1 of length less than or equal tok. The terminal nodes are in
bold.

As only sequences of maximumk steps are considered, for every ruleri ∈ R there will
be someNi such that, in any step,ri can be applied at mostNi times. Thus, the tree that
depicts all the derivations of a P systemΠ with rulesR = {r1, . . . , rm} can be described
by a DFADt over the alphabetA = {ri1

1 . . . rim
m | 0 ≤ i1 ≤ N1, . . . , 0 ≤ im ≤ Nm},

whereri1
1 . . . rim

m describes the multiset withij occurrences ofrj , 1 ≤ j ≤ m.

As Dt is a DFA overA, one can construct the minimal DFA that acceptspreciselythe
languageL(Dt) defined byDt. However, as only sequences of at mostk transitions
are considered, it is irrelevant how the constructed automaton will behave for longer
sequences. Thus, a finite cover automaton can be constructedinstead.

A deterministic finite cover automaton(DFCA) of a finite languageU is a DFA that ac-
cepts all sequences inU and possibly other sequences that are longer than any sequence
in U.

182 On Testing P Systems

r2 r4 r2 r3

r1

s

ab

bc2 c2

r4 r3

bc3 c3

r4 r3

bc4 c4

Fig. 4.1 Derivation tree forΠ1 andk = 4

Definition 8 Let M = (A, Q, q0, F, h) be a DFA,U ⊆ A∗ a finite language andl the
length of the longest sequence(s) inU . ThenM is called adeterministic finite cover
automaton(DFCA) of U if L(A) ∩A[l] = U, whereA[l] =

⋃
0≤i≤l U i denotes the sets

of sequences of length less than or equal tol with members in the alphabetA.

A minimalDFCA of U is a DFCA ofU having the least number of states. Unlike the
case in which the acceptance of the precise language is required, the minimal DFCA is
not necessarily unique (up to a renaming of the state space) [5], [6].

The concept of DFCA was introduced by Câmpeanu et al. [5], [6] and several algorithms
for constructing a minimal DFCA of a finite language have beendevised since [5], [6],
[4], [3], [11], [12], [16]. The time complexity of these algorithms is polynomial in the
number of states of the minimal DFCA. Interestingly, Garcı́a and Ruiz [8] note that the
minimization of DFCA can be approached as an inference problem, which had been
solved several years earlier.

On Testing P Systems 183

Any DFA that acceptsU is also a DFCA ofU and so the size (number of states) of a
minimal DFCA of U cannot exceed the size of the minimal DFA that acceptsU . On
the other hand, as shown by examples in this paper, a minimal DFCA of U may have
considerably fewer states than the minimal DFA that acceptsU.

A minimal DFCA of the languageL(Dt) defined by the previous derivation tree is
represented in Figure 4.2;q3 in Figure 4.2 is final state. It is implicitly assumed that
a non-final “sink” state, denotedqS , also exists, that receives all “rejected” transitions.
For testing purposes we will consider all the states as final.

r2 r4 r2 r3

r1

q0

q1

r4

r3

q2 q3

Fig. 4.2 Minimal DFCA for Π1 andk = 4

Not only the minimal DFCA ofL(Dt) may have (significantly) less states than the
minimal DFA that acceptsL(Dt), but it also provides the right approximation for the
computation of a P system. Consideru1, u2 ∈ V ∗, w =⇒∗ u1, w =⇒∗ u2, such that
the derivation fromu1 is identical to the derivation fromu2, i.e., any sequences ∈ A∗

that can be applied tou1 can also be applied tou2 and vice versa (e.g.,u1 = bc2 and
u2 = bc3 in Figure 4.1). Naturally, as the derivation fromu1 is identical to the derivation
from u2, u1 andu2 should be represented by the same state of a DFA that models the
computation of the P system. This is the case when the DFA model considered is a
minimal DFCA ofL(Dt); on the other hand,u1 andu2 will be associated with distinct
states in the minimal DFA that acceptsL(Dt), unless they appear at the same level in the
derivation treeDt. For example, in Figure 4.1,bc2 andbc3 appear at different levels in
the derivation tree and so they will be associated with distinct states in the minimal DFA
that acceptsL(Dt); on the other hand,bc2 andbc3 are mapped onto the same state (q2)

184 On Testing P Systems

of the minimal DFCA represented in Figure 4.2. Furthermore,if the entire computation
of the P system (i.e. for derivation sequences ofany length) can be described by a DFA
over some alphabetA, then this DFA model will be obtained as a DFCA ofL(Dt) for
k sufficiently large.

Once the minimal DFCAM = (A, Q, q0, F, h) has been constructed, various specific
coverage levels can be used to measure the effectiveness of atest set. In this paper we
use two of the most widely known coverage levels for finite automata:state coverage
andtransition coverage.

Definition 9 A setT ⊆ V ∗, is called atest setthat satisfies thestate coverage(SC)
criterion if for each stateq of M there existsu ∈ T and a paths ∈ A∗ that reachesq
(h(q0, s) = q) such thatu is derived fromw through the computation defined bys.

Definition 10 A setT ⊆ V ∗, is called atest setthat satisfies thetransition coverage
(TC) criterion if for each stateq of M and eacha ∈ A such thata labels a valid
transition fromq (h(q, a) 6= qS), there existu, u′ ∈ T and a paths ∈ A∗ that reaches
q such thatu andu′ are derived fromw through the computation defined bys andsa,
respectively.

Clearly, if a test set satisfies TC, it also satisfies SC. A testset forΠ1 satisfying the SC
criterion is
T1,1 = {(1, 0, 0, 0), (0, 1, 1, 0), (0, 0, 1, 2), (0, 0, 0, 2)},
whereas a test set satisfying the TC criterion is
T1,s = {(1, 0, 0, 0), (0, 1, 1, 0), (0, 0, 1, 2), (0, 0, 0, 2), (0, 0, 1, 3), (0, 0, 0, 3)}.

The TC coverage criterion defined above is, in principle, analogous to the RC criterion
given in the previous section. The TC criterion, however, does not only depend on the
rules applied, but also on the state reached by the system when a given rule has been
applied. Test suites that meet the RC and TC criteria can be efficiently calculated using
automata inference techniques [9], [15]. A stronger criterion, in which all feasible tran-
sition sequences of length less than or equal to2 must be triggered in any state can also
be defined - this will correspond to the CDRC criterion definedin the previous section.
Of course, a more careful analysis of the relationships between criteria used in testing
based on grammars and those applied in the context of finite state machines, considered
for P systems testing, needs to be conducted in order to identify the most suitable testing
procedures for these systems.

The construction of a minimal DFCA and the coverage criteriadefined above can be
generalized for a multiple compartment P system

Π = (V, µ, w1, ..., wn, R1, ..., Rn).

In this case, the input alphabet will be defined as

On Testing P Systems 185

A = {(ri1,1

1 . . . r
i1,m1
m1 , . . . , r

in,1

1 . . . r
in,mn
mn) | 0 ≤ ij,p ≤ Nj,p, 1 ≤ j ≤ mp,

1 ≤ p ≤ n},

whereNj,p is the maximum number of times rulerj , 1 ≤ j ≤ mp from compartment
p can be applied in one derivation step,1 ≤ p ≤ n. Analogously to one compartment P
systems, only computations of maximumk steps are considered.

(r3r4, r2)

(r3r4, r1)

(r2r4, r2
2)

(r2r4, r1r2)

(r2r4, r1
2)

(r2r4, r1)

(r1r4, r2)

(r1r4, r2
2)

 (r1r4, r1r2)

(r1r4, r1
2)

(r2r4, r2)

(r1r4, r1)

(r4, λ)

(r3r4, λ)

(r2, λ)

(r1, λ)

s, λ

sa, b ab, λ

ac, λ

abc2, b2c3

sac2, b3c3

sac2, b2c3

sac2, bc3

abc2, bc3

abc2, c3

ac2, bc2

ac2, c2

cc, λλλλ

sac, b2c

sac, bc

abc, bc

abc, c

Fig. 4.3 Derivation tree forΠ′1 andk = 3

For k = 3, the derivation tree ofΠ′
1 defined above is as represented in Figure 4.3. For

clarity, in Figure 4.3 if the derivation from some nodeu (not found at the bottom level in
the hierarchy) is the same as the derivation from some previous nodeu′ at a higher level
or at the same level in the hierarchy, thenu is not expanded any further; we denoteu ∼
u′. Such nodes are(sac, bc) and(abc, c), (sac, bc) ∼ (sa, b) and(abc, c) ∼ (ab, λ);
they are given in italics. A minimal DFCA of the language defined by the derivation
tree is represented in Figure 4.4.

Similar to one compartment case, test sets for considered criteria, state and transition
cover, can be defined in this more general context.

186 On Testing P Systems

(r3r4, r1)
(r3r4, r2)

(r2r4, r1)

(r1r4, r2)

(r1r4, r1
2)

(r1r4, r1r2)
(r1r4, r2

2)
(r2r4, r1

2)
(r2r4, r1r2)
(r2r4, r2

2)

(r2r4, r2)

(r1r4, r1)

(r4, λ)

(r3r4, λ)

(r2, λ)

(r1, λ)

q0

q1

q3

q2

q4 q5

Fig. 4.4 Minimal DFCA for Π′1 andk = 3

5 Conclusions and Future Work

In this paper we have discussed how P systems are tested by introducing grammar and
finite state machine based strategies. The approach is focussing on cell-like P systems,
but the same methodology can be used for tissue-like P systems. Simple examples il-
lustrate the approach and show their testing power as well ascurrent limitations. This
very initial research reveal a number of interesting preliminary problems regarding the
construction of relevant test sets that point out faulty implementations.

This paper has focused on coverage criteria for P system testing. In grammar based test-
ing, coverage is the most widely used test generation criteria. For finite state based test-
ing we have considered some simple state and transition coverage criteria, but criteria
for conformance testing (based on equivalence proofs) can also be used; this approach
is the subject of a paper in progress. Future research is alsointended to cover relation-
ships between components and the whole systems with respectto testing, other testing
principles based on the same criteria and strategies, as well as new strategies and dif-
ferent testing methods. Relationships between testing criteria based on grammars and
those used in the case of finite state machine based specifications remain to be further
investigated in a more general context.

Acknowledgements. The authors of the paper are grateful to the anonymous referees
for their comments and suggestions.

On Testing P Systems 187

Bibliography

[1] O. Andrei, G. Ciobanu, D. Lucanu (2005). Structural operational semantics of P
systems. InWMC6, LNCS3850, 31–48.

[2] O. Andrei, G. Ciobanu, D. Lucanu (2007). A rewriting logic framework for oper-
ational semantics of membrane systems.Theoretical Computer Science, 373, (3),
163–181.

[3] C. Câmpeanu, A. Păun, J. R. Smith (2006). Incremental construction of minimal
deterministic finite cover automata.Theoretical Computer Science, 363, (2), 135–
148.

[4] C. Câmpeanu, A. Păun, S. Yu (2002). An efficient algorithm for constructing min-
imal cover automata for finite languages.International Journal of Foundation of
Computer Science, 13, (1), 83–97.

[5] C. Câmpeanu, N. Santean, S. Yu (1998). Minimal cover-automata for finite lan-
guages. InWorkshop on Implementing Automata, LNCS1660, 43–56.

[6] C. Câmpeanu, N. Santean, S. Yu (2001). Minimal cover-automata for finite lan-
guages.Theoretical Computer Science, 267, (1-2), 3–16.

[7] G. Ciobanu, Gh. Păun, M. J. Pérez-Jiménez, eds. (2006). Applications of mem-
brane computing, Springer, Berlin.

[8] P. Garcı́a, Jose Ruiz (2004) A note on the minimal cover-automata for finite lan-
guages”,Bulletin of the EATCS83, 193–194.

[9] M. E. Gold (1978) Complexity of Automaton Identificationfrom Given Data,In-
formation and Control, 37, 302–320.

[10] M. Holcombe, F. Ipate (1998).Correct systems - Building business process solu-
tions,Springer, Berlin.

[11] H. Körner (2002). On minimizing cover automata for finite languages in O(n log
n) time. InCIAA, LNCS, 2608117–127.

[12] H. Körner (2003). A time and space efficient algorithm for minimizing cover au-
tomata for finite languages.International Journal of Foundation of Computer Sci-
ence, 14, (6), 1071–1086.

[13] R. Lämmel (2001). Grammar testing,FASE, LNCS, 2029, 201–216.
[14] H. Li, M. Jin, C. Liu, Z. Gao (2004). Test criteria for context-free grammars,

COMPSAC, Vol. 1, 300–305.
[15] J. Oncina, P. Garca (1992) Inferring regular languagesin polynomial update time,

in, N. Prez de la Blanca, A. Sanfeliu and E.Vidal (Eds.), Patternrecognition and
image analysis, vol. 1 of Series in Machine Perception and Artificial Intelligence,
World Scientific, 49-61.

[16] A. Păun, N. Santean, S. Yu (2000). An O(n2) algorithm for constructing minimal
cover automata for finite languages. InCIAA, LNCA, 2088243–251.

[17] Gh. Păun (2000). Computing with membranes,Journal of Computer and System
Sciences, 61, (1), 108 – 143.

[18] Gh. Păun (2002).Membrane Computing. An introduction, Springer, Berlin.
[19] The P Systems Web Site:http://ppage.psystems.eu

A Spiking Neural P System Based
Model for Hebbian Learning

———————————————
Miguel A. Gutiérrez-Naranjo and Mario J. Pérez-Jiménez

University of Sevilla, Department of Computer Science and Artificial Intelligence,
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
{magutier,marper }@us.es

Spiking neural P systemsandartificial neural networksare computational de-
vices which share a biological inspiration based on the flow of information
among neurons. In this paper we present a first model for Hebbian learning in
the framework of Spiking Neural P systems by using concepts borrowed from
neuroscience and artificial neural network theory.

1 Introduction

When an axon of cellA is near enough to excite cellB or repeatedly or per-
sistently takes part in firing it, some growth process or metabolic change takes
place in one or both cells such thatA’s efficiency, as one of the cells firingB,
is increased.

D. O. Hebb (1949) [14]

Neuroscience has been a fruitful research area since the pioneering work of Ramón y
Cajal in 1909 [23] and after a century full of results on the man and the mind, many in-
teresting questions are still unanswered. Two of such problems of current neuroscience
are the understanding of neural plasticity and the neural coding.

The first one, the understanding of neural plasticity, is related to the changes in the
amplitude of the postsynaptic response to an incoming action potential. Electrophys-
iological experiments show that the response amplitude is not fixed over time. Since
the 1970’s a large body of experimental results on synaptic plasticity has been accu-
mulated. Many of these experiments are inspired by Hebb’s postulate (see above). In
the integrate-and-fire formal spiking neuron model [9] and also in artificial neural net-
works [13], it is usual to consider a factorw as a measure of theefficacyof the synapse
from a neuron to another.

The second one, the neural coding, is related to the way in which one neuron sends
information to other ones. It is interested in the information contained in the spatio-
temporal pattern of pulses and on the code used by the neuronsto transmit information.

190 A Spiking Neural P System Based Model for Hebbian Learning

This research area wonders how other neurons decode the signal or whether the code
can be read by external observers and understand the message. At present, a definite
answer to these questions is not known.

The elementary processing units in the central nervous system are neurons which are
connected to each other in an intricate pattern. Cortical neurons and their connections
are packed into a dense network with more than104 cell bodies per cubic millimeter.
A single neuron in a vertebrate cortex often connects to morethan104 postsynaptic
neurons.

The neuronal signals consist of short electrical pulses (also called action potentials or
spikes) and can be observed by placing a fine electrode close to the soma or axon of
a neuron. The link between two neurons is asynapseand it is common to refer to the
sending neuron as a presynaptic cell and to the receiving neuron as the postsynaptic cell.

Since all spikes of a given neuron look alike, the form of the action potential does not
carry any information. Rather, it is the number and the timing of spikes what matters.
Traditionally, it has been thought that most, if not all, of the relevant information was
contained in themeanfiring rate of the neuron. The concept of mean firing rates has
been successfully applied during the last decades (see, e.g., [19] or [15]) from the pio-
neering work of Adrian [1, 2]. Nonetheless, more and more experimental evidence has
been accumulated during recent years which suggests that a straightforward firing rate
concept based on temporal averaging may be too simplistic todescribe brain activity.
One of the main arguments is that reaction times in behavioral experiment are often
too short to allow long temporal averages. Humans can recognize and respond to visual
scenes in less than 400ms [25]. Recognition and reaction involve several processing step
from the retinal input to the finger movement at the output. Ifat each processing steps,
neurons had to wait and perform a temporal average in order toread the message of the
presynaptic neurons, the reaction time would be much longer. Many other studies show
the evidence of precise temporal correlations between pulses of different neurons and
stimulus-dependent synchronization of the activity in populations of neurons (see, for
example, [5,11,10,6,24]). Most of these data are inconsistent with a concept of coding
by mean firing rates where the exact timing of spikes should play no role.

Instead of considering mean firing rates, we consider the realistic situation in which a
neuron abruptly receives an input and for each neuron the timing of the first spike after
the reference signal contains all the information about thenew stimulus.

Spiking neural P systems(SN P systems, for short) were introduced in [16] with the aim
of incorporating in membrane computing1 ideas specific to spike-based neuron models.
The intuitive goal was to have a directed graph were the nodesrepresent the neurons
and the edges represent the synaptic connections among the neurons. The flow of in-
formation is carried on the action potentials, which are encoded by objects of the same

1The foundations of membrane computing can be found in [21] and updated bibliography at [26].

A Spiking Neural P System Based Model for Hebbian Learning 191

type, thespikes, which are placed inside the neurons and can be sent from presynaptic to
postsynaptic neurons according to specific rules and makinguse of the time as a support
of information.

This paper is a first answer to the question proposed by Gh. Păun in [22] (question A)
about the way to link the study of SN P systems with neural computing and as he sug-
gests, the starting point has been not only neural computing, but also recent discoveries
in neurology.

The paper is organized as follows: first we discuss about SN P systems with input and
delay and a new computational device called Hebbian SN P system unit is presented. In
Section 3 we present our model of learning with SN P systems based on Hebb’s postu-
late. An illustrative experiment carried out with the corresponding software is shown in
Section 4. Finally, some conclusions and further discussion on some topics of the paper
are given in the last section.

2 SN P Systems with Input and Decay

An SN P system consists of a set of neurons placed in the nodes of a directed graph and
capable of sending signals (calledspikes) along the arcs of the graph (calledsynapses)
according to specific rules. The objects evolve according toa set of rules (calledspiking
rules). The idea is that a neuron containing a certain amount of spikes can consume
some of them and produce other ones. The produced spikes are sent (maybe with a delay
of some steps) to all adjacent neurons from the neuron where the rule was applied. A
global clock is assumed and in each time unit, each neuron which can use a rule should
do it, but only (at most) one rule is used in each neuron. One distinguished neuron is
considered to be the output neuron, and its spikes are also sent to the environment (a
detailed description of SN P systems can be found in [22] and the references therein).

In this section we introduce theHebbian SN P system unitwhich is an SN P system with
m + 1 neurons (m presynaptic neurons linked to one postsynaptic neuron) endowed
with input and decay. At the starting point all the neurons are inactive. At rest,the
membrane of biological neurons has a negative polarizationof about−65mV , but we
will consider the inactivity by considering the number of spikes inside the neuron is
zero. The dynamics of a Hebbian SN P system unit is quite natural. At the starting
point, all neurons are at rest and in a certain moment the presynaptic neurons receive
spikes enough to activate some rules. The instant of the arrival of the spikes can be
different for each presynaptic neuron. These spikes activate one rule inside the neurons
and the presynaptic neurons send spikes to the postsynapticneuron. In the postsynaptic
neuron a new rule can be triggered or not, depending on the arrival of spikes and it may
send a spike to the environment.

192 A Spiking Neural P System Based Model for Hebbian Learning

Fig. 2.1 Dynamics of one spike

2.1 The Input The basic idea in SN P systems taken from biological spiking neuron
models is that the information is encoded intime. The information in a Hebbian SN P
system unit is also encoded in the time in which the spikes arrive to the neuron and
the time in which the new spikes are emitted. The input will bealso encoded in time.
The idea behind this codification is that the presynaptic neurons may not be activated at
the same moment. If we consider a Hebbian SN P system unit as part of a wide neural
network, it is quite natural to think that the spikes will notarrive to the presynaptic
neurons (and consequently, their rules are not activated) at the same time. In this way,
if we consider a Hebbian SN P system unit withm presynaptic neurons{u1, . . . , um},
an input will consist of a vector~x = (x1, . . . , xm) of non-negative integers wherexi

represents the time unit of the global clock in which the neuronui is activated2.

2.2 The Decay The effect of a spike on the postsynaptic neuron can be recorded
with an intracellular electrode which measures the potential difference between the in-
terior of the cell and its surroundings. Without any spike input, the neuron is at rest
corresponding to a constant membrane potential. After the arrival of the spike, the po-
tential changes and finally decays back to the resting potential. The spikes, have an
amplitude of about 100mV and typically a duration of 1-2 ms. This means that if the
total change of the potential due to the arrival of spikes is not enough to activate the
postsynaptic neuron, it decays after some milliseconds andthe neuron comes back to its
resting potential (see Fig. 2.1).

This biological fact is not implemented in current SN P systems, where the spikes can
be inside the neuron for a long time if they are not consumed byany rule. In the Hebbian
SN P system unit, we introduce the decay in the action potential of the neurons. When
the impulse sent by a presynaptic neuron arrives to the postsynaptic neuron, if it is not

2In Section 5 we discuss about other codings for the input.

A Spiking Neural P System Based Model for Hebbian Learning 193

Fig. 2.2 Two presynaptic and one postsynaptic neuron

consumed for triggering any rule in the postsynaptic neuronit decays and its contribu-
tion to the total change of potential in the postsynaptic neuron decreases with time. This
decayed potential is still able to contribute to the activation of the postsynaptic rule if
other spikes arrive to the neuron and the addition of all the spikes trigger any rule. If this
one does not occur, the potential decays and after a short time the neuron reaches the
potential at rest. Figure 2.2 shows a scheme in which two presynaptic neurons send two
spikes each of them at different moments to a postsynaptic neuron. Figure 2.3 shows
the changes of potential in the postsynaptic neuron till reaching the threshold for firing
a response.

In order to formalize the idea of decay in the framework of SN Psystems we introduce
a new type of extended rules: therules with decay. They are rules of the form

E/ak → (ap, S); d

where,E is a regular expression over{a}, k andp are natural numbers withk ≥ p ≥ 0,
d ≥ 0 andS = (s1, s2, . . . , sr) is a finite non-increasing sequence of natural numbers
called thedecaying sequencewheres1 = k andsr = 0 . If E = ak, we will write
ak → (ap, S); d instead ofak/ak → (ap, S); d.

The idea behind thedecaying sequenceis the following. When the ruleE/ak →
(ap, S); d is triggered att0 we look inS = (s1, . . . , sr) for the leastl such thatp ≥ sl.
Suchsl spikes are sent to the postsynaptic neurons according with the delayd in the
usual way. Notice thatsl can be equal top, so at this point this new type of rule is a
generalization of the usual extended rules.

This definition of decay3 can be seen as a generalization of the decaying spikes pre-
sented in [7], where a decaying spikea is written in the form(a, e), wheree ≥ 1 is the
period. From the moment a pair(a, e) arrives in a neuron,e is decremented by one in
each step of computation. As soon ase = 0, the corresponding spike is lost and cannot
be used anymore.

3Further discussion about the decay can be found in Section 5.

194 A Spiking Neural P System Based Model for Hebbian Learning

Fig. 2.3 The potential at the postsynaptic neuron

In this way, a ruleE/ak → ap; d (k > p) whereap arep decaying spikes(a, e) can
be seen with our notation asE/ak → (ap, S); d with S = (s1, . . . , se+2), s1 = k,
s2 = · · · = se+1 = p andse+2 = 0.

2.3 Hebbian SN P System Units Hebbian SN P system units are SN P systems
with a fixed topology endowed with input and decay. They have the following common
features:

• The initial number of the spikes inside the neurons is alwayszero in all Hebbian
SN P system units, so we do not refer to them in the descriptionof the unit.

• All the presynaptic neurons are linked to only one postsynaptic neuron and these
are all the synapses in the SN P system, so they are not provided in the description.

• The output neuron is the postsynaptic one.

Bearing in mind these features, we describe a Hebbian SN P system unit in the following
way.

Definition 1 A Hebbian SN P system unitof degree(m, k, p) is a construct

HΠ = (O, u1, . . . , um, v),

where:

• O = {a} is the alphabet (the objecta is calledspike);

A Spiking Neural P System Based Model for Hebbian Learning 195

• u1, . . . , um are the presynaptic neurons. Each presynaptic neuronui has associ-
ated a set of rulesRi = {Ri1, . . . , Rili} where for eachi ∈ {1, . . . , m} and
j ∈ {1, . . . , li}, Rij is a decaying rule of the form:

ak → (anij , S); dij

wherek ≥ nij ≥ 0 anddij ≥ 0. We will callnij thepresynaptic potentialof the
rule anddij is thedelayof the rule. Note that all rules are triggered byk spikes.
The decaying sequenceS = (s1, s2, . . . , sr) is a finite non increasing sequence of
natural numbers called thedecaying sequencewheres1 = k andsr = 0 .

• v is the postsynaptic neuron which contains only one postsynaptic rule

E∗
p/ap → a; 0

whereE∗
p is the set4 of regular expressions{n ∈ N |n ≥ p}. We will call p the

thresholdof the postsynaptic potential of the Hebbian SN P system unit.

By considering the decaying sequences we can distinguish among three types of Heb-
bian SN P system units:

• Hebbian SN P system units withuniform decay. In this case the decaying sequence
S is the same for all the rules in the presynaptic neurons.

• Hebbian SN P system units withlocally uniform decay. In this case the decaying
sequenceS is the same for all the rules in each presynaptic neuron.

• Hebbian SN P system units withnon-uniform decay. In this case each rule has
associated a decaying sequence.

Definition 2 An input for a Hebbian SN P system unitof degreem is a vector~x =
(x1, . . . , xm) of m non-negative integersxi.

A Hebbian SN P system unit with inputis a pair (HΠ, ~x) whereHΠ is Hebbian SN P
system unit and~x is an input for it.

The intuitive idea behind the input is encoding the information in time. Each component
of the input represent the moment, according to the global clock, in whichk spikes are
provided to the corresponding presynaptic neuron.

2.4 How it works In this section we provide a description of the semantics of a
Hebbian SN P system unit of degree(m, k, p). As we saw before, eachxi in the input
~x = (x1, . . . , xm) represents the time in whichk spikes are provided to the neuron

4This rule is an adaptation of the concept of a rule from an extended spiking neural P system with thresh-
olds taken from [7].

196 A Spiking Neural P System Based Model for Hebbian Learning

ui. At the momentxi in which the spikes arrive to the neuronui one rule(ak →
(anij , S); dij) is chosen in a non-deterministic way among the rules of the neuron.

Applying it means thatk spikes are consumed and we look inS = (s1, . . . , sr) for the
leastl such thatnij ≥ sl. Suchsl spikes are sent to the postsynaptic neurons according
to the delaydij in the usual way, i.e.,sl spikes arrive to the postsynaptic neuron at the
momentxi +dij +1. The decay of such spikes is determined by the decaying sequence.
As we saw above, if the spikes are not consumed by the triggering of a rule in the
postsynaptic neuron, they decay and at timexi +dij +2 we will consider thatsl− sl+1

spikes have disappeared and we only havesl+1 spikes in the postsynaptic neuron. If the
spikes are not consumed in the following steps by the triggering of a postsynaptic rule,
at timex0+dij+1+r−l the number of spikes will be decreased tosr = 0 and the spikes
are lost. Formally, if the chosen rule at the membranei is Rij ≡ ak → (anij , S); dij

with S = (s1, . . . , sr) and the rule is activated at timet = xi, then the number of spikes
sent byRij occurring in the postsynaptic neuron at timet = xi +dij +1+k is sk+k, if
k ∈ {0, . . . , r − l} and zero otherwise. The indexl is the least index in{1, . . . , r} such
thatnij ≥ sl.

The potential on the postsynaptic neuron depends on the contributions of the chosen
rules in the presynaptic neurons. Such rules send spikes that arrive to the postsynaptic
neuron at different instants which depend on the input (the instant in which the presy-
naptic neuron is activated) and the delay of the chosen rule.The contribution of each
rule to the postsynaptic neuron also changes along the time due to the decay.

Formally, the potential of the postsynaptic neuron in a given instant is a natural number
calculated as a functionR∗ which depends on the timet, on the input~x and on the
rules chosen in each neuronR∗(R1i1 , . . . , Rmim

, ~x, t) ∈ N. Such a natural number
represents the number of the spikes at the momentt in the postsynaptic neuron and it is
the result of adding the contributions of the rulesR1i1 , . . . , Rmim

.

The Hebbian SN P system unit produces an output if the rule of the postsynaptic neuron
v, E∗

p/ap → a is triggered, i.e., if at any momentt the amount of spikes in the postsy-
naptic neuron is greater than or equal to the thresholdp, then the rule is activated and
triggered. If there does not exist sucht, then the Hebbian SN P system unit does not
send any spike to the environment.

Bearing in mind the decay of the spikes in the postsynaptic neuron, if any spike has been
sent out by the postsynaptic neuron after an appropriate number of steps, any spike will
be sent to the environment. In fact, we have a lower bound for the number of steps in
which the spike can be expelled, so we have a decision method to determine if the input
~x produces or not an output5.

5A detailed description and some examples can be found in [12].

A Spiking Neural P System Based Model for Hebbian Learning 197

3 Learning

If we look at the Hebbian SN P system units as computational devices where the target
is the transmission of information, we can consider that thedevicesuccessesif a spike
is sent to the environment and itfails if the spike is not sent. In this way, the lack
of determinism in the choice of rules is a crucial point in thesuccess of the devices
because as we have seen above, if we provide several times thesame input, the system
can succeed or not.

In order to improve the design of these computational devices and in a narrow analogy
with the Hebbian principle, we introduce the concept ofefficacy in the Hebbian SN
P system units. Such efficacy is quantified by endowing each rule with a weight that
changes along the time, by depending on the contribution of the rule to the success of
the device.

According to [8], in Hebbian learning, a synaptic weight is changed by a small amount if
presynaptic spike arrival and postsynaptic firingcoincides. This simultaneity constraint
is implemented by considering a parametersij which is the difference between the
arrival of the contribution of the ruleRij and the postsynaptic firing. Thus, the efficacy
of the synapses such that its contributions arrive repeatedly shortly before a postsynaptic
spike occurs is increased (see [14] and [3]). The weights of synapses such that their
contributions arrive to the postsynaptic neuronafter the postsynaptic spike is expelled
are decreased (see [4] and [17]). This is basically the learning mechanism suggested
in [18].

3.5 The Model In order to implement a learning algorithm in our Hebbian SN P
system units, we need to extend it with a set of weights that measure the efficacy of
the synapses. The meaning of the weights is quite natural andit fits into the the theory
of artificial neural networks [13]. The amount of spikes thatarrives to the postsynaptic
neuron due to the ruleRij depends on thecontributionof each rule and also on the
efficacywij of the synapse. As usual in artificial neural networks, the final contribution
will be the contribution sent by the rule multiplied by the efficacywij .

We fix these concepts in the following definition.

Definition 3 Anextended Hebbian SN P system unitof degreem is a construct

EHΠ = (HΠ, w11, . . . , wmlm),

where:

• HΠ is a Hebbian SN P system unit of degreem and the rules of the presynaptic
neuronui areRi = {Ri1, . . . , Rili} with i ∈ {1, . . . , m}.

• For each ruleRij with i ∈ {1, . . . , m} andj ∈ {1, . . . , li}, wij is a real number
which denotes theinitial weightof the ruleRij .

198 A Spiking Neural P System Based Model for Hebbian Learning

Associating a weight to each rule means to consider an individual synapse for each rule
instead of a synapse associated to the whole neuron. The ideaof considering several
synapses between two neurons is not new in computational neuron models. For exam-
ple, in [20] the authors present a model for spatial and temporal pattern analysis via
spiking neurons where several synapses are considered. Thesame idea had previously
appeared in [8]. Considering several rules in a neuron and one synapse associated to
each rule allows us to design an algorithm for changing the weight (the efficacy) of the
synapse according to the result of the different inputs.

The concept of input of a extended Hebbian SN P system unit is similar to the previ-
ous one. The information is encoded in time and the input of each neuron denotes the
moment in which the neuron is excited.

Definition 4 An extended Hebbian SN P system unit with inputis a pair (EHΠ, ~x),
whereHΠ is an Hebbian SN P system unit and~x is an input for it.

The semantics As we saw before, eachxi in the input~x = (x1, . . . , xm) represents the
time in which the presynaptic neuronui is activated. The formalization of the activation
of the neuron in this case differs from the Hebbian SN P systemunits. The idea behind
the formalization is still the same: the postsynaptic neuron receives a little amount of
electrical impulse according to the excitation time of the presynaptic neuron and the
efficacy of the synapsis. The main difference is that we consider that there exist sev-
eral synapses between one presynaptic neuron and the postsynaptic one (one synapse
for each rule in the neuron) and the potential is transmittedalongall these synapses
according to their efficacy.

Extending the Hebbian SN P system units with efficacy in the synapses and considering
that there are electrical flow along all of them can be seen as ageneralisation of the
Hebbian SN P system units. In Hebbian SN P system units only one ruleRij is chosen
in the presynaptic neuronui and the contribution emitted byRij arrives to the postsy-
naptic neuron according to the decaying sequence. Since theweightwij multiplies the
contribution in order to compute the potential that arrivesto the postsynaptic neuron, we
can consider the Hebbian SN P system unit as an extended Hebbian SN P system unit
with the weight of the chosen ruleRij equals to one and the weight of the remaining
rules equals to zero.

At the momentxi in the presynaptic neuronui we will consider thatall rules(ak →
(anij , S); dij) are activated. The potential on the postsynaptic neuron depends on the
contributions of the rules in the presynaptic neurons and the efficacy of the respective
synapses. Let us consider that at timexi the rule(ak → (anij , S); dij) is activated
and the efficacy of its synapse is represented by the weightwij . When the rule(ak →
(anij , S); dij) is triggered at the instantt0 we look inS = (s1, . . . , sr) for the leastl
such thatp × wij ≥ sl. Thensl spikes are sent to the postsynaptic neurons according
with the delayd in the usual way.

A Spiking Neural P System Based Model for Hebbian Learning 199

At t0+d+1, thesl spikes arrive to the postsynaptic neurons. The decay of suchspikes is
determined by the decaying sequence. If the spikes are not consumed by the triggering
of a rule in the postsynaptic neuron, they decay and at timet0 + d + 2 we will consider
thatsl− sl+1 spikes have disappeared and we only havesl+1 spikes in the postsynaptic
neuron. If the spikes are not consumed in the following stepsby the triggering of a
postsynaptic rule, at stept0 + d + 1 + r − l the number of spikes will be decreased to
sr = 0 and the spikes are lost. The extended Hebbian SN P system unitproduces an
output if the rule of the postsynaptic neuronv, E∗

p/ap → a is triggered.

3.6 The Learning Problem Let us come back to the Hebbian SN P system units. In
such units, provided an input~x, success can be reached or not (i.e., the postsynaptic rule
is triggered or not) depending on the non-deterministically rules chosen. In this way, the
choice of some rules isbetterthan the choice of other ones, by considering that a rule
is betterthan another if the choice of the former leads us to the success with a higher
probability than the choice of the latter. Our target is to learn which are the best rules
according to this criterion.

Formally, alearning problemis a 4-uple(EHΠ, X, L, ǫ), where:

• EHΠ is an extended Hebbian SN P system unit.
• X = { ~x1, . . . ~xn} is a finite set ofinputsof EHΠ.
• L : Z → Z is a function from the set of integer numbers onto the set of integer

numbers. It is called thelearning function.
• ǫ is a positive constant called therate of learning.

Theoutputof a learning problem is an extended Hebbian SN P system unit.

Informal description of the algorithmLet us consider an extended Hebbian SN P sys-
temEHΠ, a learning functionL : Z → Z and a rate of learningǫ. Let us consider an
input~x and we will denote byt~x the moment when the postsynaptic neuron reaches the
potential for the trigger of the postsynaptic neuron. If such potential is not reached (and
the postsynaptic neuron is not triggered) thent~x =∞.

On the other hand, for each ruleRij ≡ ak → (anij , S); dij of a presynaptic neuron
we can compute the momentt~xij in which its contribution to the postsynaptic potential
arrives to the postsynaptic neuron. It depends on the input~x and the delaydij of the
rule

t~xij = ~xi + dij + 1

where~xi is thei-th component of~x.

We are interested in the influence of the ruleRij on the triggering of the postsynaptic
neuron. For that we need to know the difference between the arrival of the contribution
t~xij and the momentt~x in which the postsynaptic neuron is activated.

200 A Spiking Neural P System Based Model for Hebbian Learning

For each ruleRij and each input~x, such a difference is

s~x
ij = t~x − t~xij

• If s~x
ij = 0, then the postsynaptic neuron reaches the activation exactly in the instant

in which the contribution of the ruleRij arrives to it. This fact leads us to consider
that the contribution ofRij to the postsynaptic potential has had a big influence on
the activation of the postsynaptic neuron.
• If s~x

ij > 0 and it issmall, then the postsynaptic neuron reaches the activation a bit
later than the arrival of the contribution of the ruleRij to it. This fact leads us to
consider that the contribution ofRij to the postsynaptic potential has influenced on
the activation of the postsynaptic neuron due to the decay, but it is not so important
as in the previous case.
• If s~x

ij < 0 or s~x
ij > 0 and it is notsmall, then the contribution ofRij has no

influence on the activation of the postsynaptic neuron.

The different interpretations ofsmall or big influenceare determined by the different
learning functionsL : Z→ Z. For each ruleRij and each input~x, L(s~x

ij) ∈ Z measures
de degree of influence of the contribution ofRij to the activation of the postsynaptic
neuron produced by the input~x.

According to the principle of Hebbian learning, the efficacyof the synapses such that
their contributions influence on the activation of the postsynaptic neuron must be in-
creased. The weights of synapses such that their contributions have no influence on the
activation of the postsynaptic neuron are decreased.

Formally, given an extended Hebbian SN P systemHΠ, a learning functionL : Z→ Z,
a rate of learningǫ and an input~x of HΠ, thelearning algorithmoutputs a new extended
Hebbian SN P systemHΠ′ which is equal toHΠ, but the weights: eachwij has been
replaced by a neww′

ij according to

w′
ij = wij + ǫ · L(s~x

ij)

Depending on the sign ofL(s~x
ij), the ruleRij will increase or decrease its efficacy.

Note thatL(s~x
ij) is multiplied by therate of learningǫ. This rate of learning is usual

in learning process in artificial neural networks. It is usually a small number which
guarantees that the changes on the efficacy are not abrupt.

Finally, given alearning problem(HΠ, X, L, ǫ), the learning algorithm takes~x ∈ X
and outputsHΠ′. In the second step, the learning problem(HΠ′, X−{~x}, L) is consid-
ered and we get a newHΠ′. The process finishes when all the inputs has been consumed
and the algorithm outputs the last extended SN P system unit.

A Spiking Neural P System Based Model for Hebbian Learning 201

The use of weights needs more discussion. The weights are defined as real numbers and
membrane computing devices are discrete. If we want to deal with discrete computation
in all the steps of the learning process we have to choose the parameters carefully. The
following result gives a sufficient constraint for having aninteger number of spikes at
any moment.

Theorem 1 Let a be the greatest¡ non-negative integer such that for all presynaptic
potentialnij there exists an integerxij such thatnij = xij · 10a.

Let b be the smallest non-negative integer such that for all initial weightwij and for
the rate of learningǫ there exist the integerskij andk such thatwij = kij · 10−b and
ǫ = k · 10−b.

If a− b ≥ 0, then for all presynaptic potentialnij and all the weightsw obtained along
the learning process,nij · w is an integer number.

Proof For the sake of simplicity, we denote bywr the update weightw afterr steps
(andw0 is the initial weight). Then, it suffices to consider the recursive generation of
new weightswn+1 = wn + ǫ · L(sn), wheresn is the corresponding value in the step
n, and therefore

wn+1 = w0 + ǫ · (L(s0) + · · ·+ L(sn)).

If we developnij · wn+1 according to the statement of the theorem, we have that there
exist the integersxij , k0 andk such that

nij · wn+1 = xij · 10a · [k0 · 10−b + (k · 10−b(L(s0) + · · ·+ L(sn)))]

= 10a−b · xij · [k0 + k(L(s0) + · · ·+ L(sn))]

Sincexij · [k0 + k(L(s0) + · · · + L(sn))] is an integer number, ifa − b ≥ 0 then
nij · wn+1 is an integer number. 2

4 A Case Study

Let us consider the Hebbian SN P system

HΠ = (O, u1, u2, v)

with uniform decay, where:

• O = {a} is the alphabet;
• u1, u2 are the presynaptic neurons. The presynaptic neuronsu1, u2 have associ-

ated the sets of rulesRi, whereR1 = {R11, R12, R13} andR2 = {R21, R22},
respectively, with

202 A Spiking Neural P System Based Model for Hebbian Learning

R11 ≡ a3000 → (a3000, S); 0 R21 ≡ a3000 → a1000; 0

R12 ≡ a3000 → (a2000, S); 1 R22 ≡ a3000 → a3000; 3

R13 ≡ a3000 → (a2000, S); 7

• Thedecaying sequenceis S = (3000, 2800, 1000, 500, 0).
• v is the postsynaptic neuron which contains only one postsynaptic ruleE∗

1200/a1200

→ a; 0.

Let EHΠ be the Hebbian SN P system unitHΠ extended with the initial weights
w11 = w12 = w13 = w21 = w22 = 0.5.

Let us consider the learning problem(EHΠ, X, L, ǫ) where

• EHΠ is the extended Hebbian SN P system unit described above,
• X is a set of 200 random inputs(x1

i , x
2
i) with 1 ≤ i ≤ 200 and x1

i , x
2
i ∈

{0, 1, . . . , 5}
• L is the learning functionL : Z→ Z

L(s) =





3 if s = 0

1 if s = 1

−1 otherwise

• The rate of learning isǫ = 0.001

We have programmed an appropriate software for dealing withlearning problems. After
applying the learning algorithm, we obtain a new extended Hebbian SN P system unit
similar toEHΠ but with the weights

w11 = 0.754, w12 = 0.992, w13 = 0.3, w21 = 0.454, w22 = 0.460

Figure 4.4 shows the evolution of the weights of the synapses.

The learning process shows clearly the differences among the rules.

• The worst rule is R13. In a debugging process of the design of an SN P system
network such rule should be removed. The value of the weight has decreased along
all the learning process. This fact means that the rule has never contributed to the
success of the unit and then it can be removed.
• On the contrary, thebestrules areR11 andR12. In most of the cases, (not all) these

rules have been involved in the success of the unit.
• The other two rulesR21 andR22 have eventually contributed to the success of the

unit but not so clearly asR11 andR21.

A Spiking Neural P System Based Model for Hebbian Learning 203

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

W
ei

gh
ts

Inputs

Sin1
Sin2
Sin3
Sin4
Sin5

Fig. 4.4 The evolution of the weights

5 Conclusions and Future Work

The integration in a unique model of concepts from neuroscience, artificial neural net-
works and spiking neural P systems is not an easy task. Each ofthe three fields have
its own concepts, languages and features. The work of integration consists on choosing
ingredients from each field and trying to compose a computational device with the dif-
ferent parts. This means that some of the ingredients used inthe devices presented in
this paper are not usual in the SN P systems framework. Although the authors have tried
to be as close to the SN P system spirit as possible some remarks should be considered.

In the paper, the input of the device is provided as a vector(x1, . . . , xm) of non-negative
integers, wherexi represents the moment in which one rule (non-deterministically cho-
sen) of the neuronui is activated. The information encoded in the vector(x1, . . . , xm)
can be provided to the input neurons bym spike trains were all the elements are 0’s and
there is only one 1 in the positionti. In this way, the input is encoded bym spike trains,
which is closer to the standard inputs in SN P systems.

204 A Spiking Neural P System Based Model for Hebbian Learning

The idea of providing the input with a spike train of 0’s and only one 1 in the position
ti carries out new problems. In the literature of SN P systems, in the instantti only one
spike is supplied to the neuronui. In our device we want that a rule of typear → ap; d
is activated withr > 1. At this point we can consider several choices. The first one is
to consider that at timeti the spike train providesr spikes, but this choice lead us far
from the SN P system theory. A second option is to consider that the spike trains have
r consecutive 1’s and each of them provide one spike. The remaining elements in the
train are zeros. In this way the momentti will be the instant in which ther spikes have
been provided to the neuron. A drawback for this proposal canbe thatr can be a big
number and this increase the number of steps of the device. A third choice is to consider
amplifier modules as in Figure 5.5. The leftmost neuron receives a spike train where
all the elements are 0’s but theti − th which is 1. At the momentti only one spike is
supplied to the neuron. Atti + 1, one spike arrives to ther postsynaptic neurons, and
each of them sends one spike to the rightmost neuron, so atti +2 exactlyr spikes arrive
simultaneously to the last neuron.

These three solutions can be an alternative to the use of the vector (t1, . . . , tm) and
deserve to be considered for further research in this topic.

Another main concept in this paper is the decay. It has strongbiological intuition, but it
is difficult to insert into the SN P systems theory. The main reason is that if we consider
the spike as the information unit it does not make sense to talk about a half of a spike
or a third of a spike. In that sense, the approach to decay from[7] is full of sense since
one spike exists or it is lost, but its potential it is not decreasing in time.

The key point for the decay in this paper is taken from the definition of extendedSN
P systems. In such devices, a neuron can send a different amount of spikes depending
on the chosen rule. So, the information is not only encoded inthe time between two
consecutive spikes, but on thenumberof spikes. This lead us to define the decay as a
decrement in the number of spikes. In this way, we can consider that a pulse between
two neurons is composed by a certain number of spikes which can be partially lost
depending on the time.

a a ;0

a a ;0

a a ;0

a a ;0

a a ;0

a
r

a
n
;d...

...

Fig. 5.5 Amplifier module

A Spiking Neural P System Based Model for Hebbian Learning 205

a a;0
p

a a ;d1
n1 k

a
k

a ;dv
nv

... w
i

Input neuron

Decay neuron Postsynaptic neuron

Fig. 5.6 Including a decay neuron

In this paper, such a decay has been implemented by extendingthe rules with a finite
decreasing sequence which can be uniform, locally-uniformor non uniform for the
set of rules. Other implementations are also possible. Probably, the decay can also be
implemented with an extra neuron as in Figure 5.6 which sendsto the final neuron a
decaying sequence of spikes.

The use of weights also deserves to be discussed. In Theorem 1we provide sufficient
conditions for handling at every moment an integer number ofspikes. Nonetheless, fur-
ther questions should be considered. For example, the use ofnegative weights or weights
greater than one. Should we consider negative weights and/or a negativecontribution to
the postsynaptic potential? The use weights greater than one leads us to consider that the
contribution of one rule to the postsynaptic potential isgreater thanits own presynaptic
potential. Can the efficiency of the synapses amplify the potential beyond the number
of emitted spikes?

More technical questions are related to the rate of learningand to the algorithm of
learning. Both concepts have been directly borrowed from artificial neural networks
and need deeper study in order to adapt them to the specific features of SN P systems.

As a final remark, we consider that this paper opens a promising line research bridging
SN P systems and artificial neural networks without forgetting the biological inspiration
and also opens a door to applications of SN P systems.

Acknowledgements. The authors acknowledge the support of the project TIN2006-
13425 of the Ministerio de Educación y Ciencia of Spain, cofinanced by FEDER funds,
and the support of the project of excellence TIC-581 of the Junta de Andalucı́a.

Bibliography

[1] E.D. Adrian. The impulses produced by sensory nerve endings: Part I.The Journal
of Physiology61, (1926), 49–72.

[2] E.D. Adrian.The basis of Sensation. W.W. Norton. New York, (1926).
[3] T.V.P. Bliss and G.L. Collingridge.Nature, 361, (1993), 31–99.
[4] D. Debanne, B.H. Gähwiler and S.M. Thompson. Asynchronous Pre- and Postsy-

naptic Activity Induces Associative Long-Term Depressionin Area CA1 of the Rat

206 A Spiking Neural P System Based Model for Hebbian Learning

Hippocampus in vitro.Proceedings of the National Academy of Sciences, 91(3),
(1994), 1148–1152.

[5] R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk and H.J. Reit-
boeck. Coherent oscillations: A mechanism of feature linking in the visual cortex?
Biological Cybernetics60, (1998), 121–130.

[6] A.K. Engel, P. König, A.K. Kreiter, and W. Singer. Interhemispheric sycrhoniza-
tion of oscillatory neural responses in cat visual cortex.Science, 252, (1991),
1177–1179.

[7] R. Freund, M. Ionescu and M. Oswald. Extended spiking neural P systems with de-
caying spikes and/or total spiking.Proceedings of the International Workshop Au-
tomata for Cellular and Molecular Computing, MTA SZTAKI, Budapest, (2007),
64–75.

[8] W. Gerstner, R. Kempter, L. van Hemmen and H. Wagner. A neuronal learning
rule for sub-millisecond temporal coding.Nature, 383, (1996), 76–78.

[9] W. Gerstner and W.Kistler.Spiking Neuron Models. Single Neurons, Populations,
Plasticity. Cambridge University Press, (2002).

[10] C.M. Gray, P. König, A.K. Engel and W. Singer. Oscillatory responses in cat vi-
sual cortex exhibit inter-columnar synchronization whichreflects global stimulus
properties.Nature, 338, (1989), 334–337.

[11] C.M. Gray and W. Singer. Stimulus-specific neuronal oscillations in orientation
columns of cat visual cortex.Proceedings of the National Academy of Sciences,
86, (1989), 1698–1702.

[12] M.A. Gutiérrez- Naranjo and M.J. Pérez-Jiménez. A First Model for Hebbian
Learning with Spiking Neural P Systems. In D. Dı́az-Pernilet al. (eds.),Sixth
Brainstorming Week on Membrane Computing. Fénix Editora, (2008), 211-233.

[13] S. Haykin.Neural Networks. A Comprehensive Foundation. Macmillan College
Publishin Company, Inc. (1994).

[14] D.O. Hebb.The Organization of Behavior. Wiley, New York, (1949).
[15] D.H. Hubel and T.N. Wiesel. Receptive Fields of Single Neurons in the Cat’s Stri-

ate Cortex.The Journal of Phisiology, 148, (1959), 574–591.
[16] M. Ionescu, Gh. Păun and T. Yokomori: Spiking neural P systems.Fundamenta

Informaticae, 71 (2-3), (2006), 279–308.
[17] H. Markram and B. Sakmann. Action potentials propagating back into dendrites

triggers changes in efficiency of single-axon synapses between layer V pyramidal
neurons.Soc. Neurosci. Abstr., 21, (1995), 2007.

[18] H. Markram and M. Tsodyks. Redistribution of synaptic efficacy between neocor-
tical pyramidal neurons.Nature, 382, (1996), 807–810.

[19] V.B. Mountcastle. Modality anf topographic properties of single neurons of cat’s
somatosensory cortex.Journal of Neurophysiology, 20, (1957), 408–434.

[20] T. Natschläger and B. Ruf. Spatial and temporal pattern analysis via spiking neu-
rons.Network: Computation in Neural Systems, 9(3), (1998), 319–338.

[21] Gh. Păun:Membrane Computing. An Introduction. Springer–Verlag, Berlin, 2002.
[22] Gh. Păun: Twenty six research topics about spiking neural P systems. In M.A.

Gutiérrez-Naranjo, Gh. Păun, A. Romero-Jiménez and A. Riscos-Núñez, editors.

A Spiking Neural P System Based Model for Hebbian Learning 207

Fifth Brainstorming Week on Membrane Computing, Fénix Editora, Sevilla, (2007),
263–280.

[23] S. Ramón y Cajal.Histologie du Systeme Nerveux de l’Homme et des Vertebre.
A. Maloine, Paris, (1909).

[24] W. Singer. The role of synchrony in neocortical processing and synaptic plastic-
ity. In E. Domany, J.L. van Hemmel and K. Schulten, editors,Models of Neural
Networks II, chapter 4, Springer Verlag, Berlin, (1994).

[25] S. Thorpe, S, Fize and C. Marlot. Speed of processing in the human visual system.
Nature, 381, (1996), 520-522.

[26] P systems web pagehttp://ppage.psystems.eu/

Event-driven Metamorphoses of P Systems

———————————————
Thomas Hinze, Raffael Faßler, Thorsten Lenser, Naoki Matsumaru,
Peter Dittrich

Friedrich-Schiller-Universität Jena, Bio Systems Analysis Group,
Ernst-Abbe-Platz 1–4, D-07743 Jena, Germany
{hinze,raf,thlenser,naoki,dittrich }@minet.uni-jena.de

Complex reaction systems in molecular biology are often composed of par-
tially independent subsystems associated with the activity of external or internal
triggers. Occurring as random events or dedicated physicalsignals, triggers ef-
fect transitions from one subsystem to another which might result in substantial
changes of detectable behaviour. From a modelling point of view, those subsys-
tems typically differ in their reaction rules or principle of operation. We propose
a formulation of trigger-based switching between models from a class of P sys-
tems with progression in time employing discretised mass-action kinetics. Two
examples inspired by biological phenomena illustrate the consecutive interplay
of P systems towards structural plasticity in reaction rules: evolutionary con-
struction of reaction networks and artificial chemistries with self-reproducible
subunits.

1 Introduction

Structural dynamics in biological reaction networks, alsoknown asplasticity [4,21], is
a common property of complex processes in living systems andtheir evolution. Within
the last years, its impetus for adaptation, variability, emergence, and advancement in bi-
ology became more and more obvious. Facets of life provide a plethora of examples for
structural dynamics: Organisms undergometamorphosisby the physical development
of their form and metabolism. At a more specific level, synaptic plasticity within central
nervous systems of animals [6] as well as photosynthesis of plants [3] are characterised
by substantial structural changes of the underlying reaction networks over time, de-
pending on external or even internal signals. In case of photosynthesis, light-dependent
reactions differ from processes of the Calvin cycle. In nervous systems, presence of
neurotransmitters for longer periods effects duplicationor discreation of synapses. All
these and many further biological phenomena can be divided into several stages of func-
tion. Typically, each stage corresponds to a subsystem of fixed components. In terms of
modelling aspects, such a subsystem is defined by a dedicatedset of species and un-
changing reactions. Only the species concentrations vary in time or space according to
identical rules.

210 Event-driven Metamorphoses of P Systems

Along with the development of systems biology, the integration of separately considered
subsystems into more general frameworks comes increasingly into the focus of research
to understand complex biological phenomena as a whole [1]. From this perspective,
the question arises how to assemble multiple process models, each of which captures
selected specific aspects of the overall system behaviour.

Motivated by this question, we contribute to the specification of a framework able to
incorporate correlated temporally “local” models whose dynamical behaviour passes
over from one to the other. In this context, time- and value-discrete approaches promise
a high degree of flexibility in separate handling of atomic objects rather than analytical
methods since singularities caused by transition between models can affect continuous
gradients and amplify numerical deviations. We introduce adeterministic classΠPMA

of P systems with strictprioritisationof reaction rules and a principle of operation based
on discretisedmass-actionkinetics. Systems within this class enable an iterative pro-
gression in time. Representing temporally local models of chemical reaction systems,
they are designed to interface to each other. An overlying state transition system man-
ages the structural dynamics of P systemsΠPMA according to signals mathematically
encoded by constraints (boolean expressions). Two case studies gain insight into the
descriptional capabilities of this framework.

Related work addresses two aspects: discretisation of chemical kinetics and structural
network dynamics. On the one hand, metabolic or cell signalling P systems like [14] de-
scribe the dynamical behaviour of a fixed reaction network based on concentration gra-
dients, numerically studied in [8]. Results of [10] presenta discretisation of Hill kinet-
ics mainly employed for gene regulatory networks. Artificial chemistries were explored
in [7] along with issues of computability [13] and prioritisation of reaction rules [20].
On the other hand, spatial structural dynamics in P systems was primarily considered
as active membranes [16,17]. Dynamical reaction rules in probabilistic P systems were
investigated in [18].

The paper is organised as follows: First we present a method for discretisation of mass-
action kinetics leading to P systemsΠPMA whose properties are discussed briefly. Sec-
tion 3 introduces a transition framework for P systems of this class together with a de-
scription of the transition process. For demonstration, a chemical register machine with
self-reproducible components for bit storage is formulated and simulated in Section 4.
Two specialities are utilisation of a chemical clock based on an oscillating reaction net-
work and a chemical encoding of binary numbers for register contents ensuring a high
reliability in function from an engineering point of view. In Section 5, we discuss the
transition framework for monitoring the evolutionary construction of reaction networks.

Event-driven Metamorphoses of P Systems 211

2 Deterministic P Systems for Chemistries Based on
Mass-Action Kinetics

Multiset Prerequisites. Let A be an arbitrary set andN the set of natural numbers
including zero. A multiset overA is a mappingF : A −→ N ∪ {∞}. F (a), also
denoted as[a]F , specifies the multiplicity ofa ∈ A in F . Multisets can be writ-
ten as an elementwise enumeration of the form{(a1, F (a1)), (a2, F (a2)), . . .} since
∀(a, b1), (a, b2) ∈ F : b1 = b2. The support ofF , supp(F) ⊆ A, is defined by
supp(F) = {a ∈ A | F (a) > 0}. A multiset F over A is said to be empty iff
∀a ∈ A : F (a) = 0. The cardinality|F | of F over A is |F | =

∑
a∈A F (a).

Let F1 and F2 be multisets overA. F1 is a subset ofF2, denoted asF1 ⊆ F2, iff
∀a ∈ A : (F1(a) ≤ F2(a)). MultisetsF1 andF2 are equal iffF1 ⊆ F2 ∧ F2 ⊆ F1.
The intersectionF1 ∩ F2 = {(a, F (a)) | a ∈ A ∧ F (a) = min(F1(a), F2(a))}, the
multiset sumF1⊎F2 = {(a, F (a)) | a ∈ A∧F (a) = F1(a)+F2(a)}, and the multiset
differenceF1 ⊖ F2 = {(a, F (a)) | a ∈ A ∧ F (a) = max(F1(a) − F2(a), 0)} form
multiset operations. The term〈A〉 = {F : A −→ N ∪ {∞}} describes the set of all
multisets overA.

Mass-Action Kinetics for Chemical Reactions. The dynamical behaviour of chem-
ical reaction networks is described by the species concentrations over the time course.
According to biologically predefined motifs, a variety of models exists to formulate the
reaction kinetics. Since most of them imply specific assumptions, we restrict ourselves
to general mass-action kinetics [5]. Here, a continuous approach to express the dynam-
ical behaviour considers production and consumption ratesvp andvc of each species

S in order to change its concentration byd [S]
d t = vp([S]) − vc([S]). These rates re-

sult from the reactant concentrations, their stoichiometric factorsai,j ∈ N (reactants),
bi,j ∈ N (products) and kinetic constantsk̂j ∈ R+ assigned to each reaction quantifying
its speed. For a reaction system with a total number ofn species andh reactions

a1,1S1 + a2,1S2 + . . . + an,1Sn
k̂1−→ b1,1S1 + b2,1S2 + . . . + bn,1Sn

a1,2S1 + a2,2S2 + . . . + an,2Sn
k̂2−→ b1,2S1 + b2,2S2 + . . . + bn,2Sn

...

a1,hS1 + a2,hS2 + . . . + an,hSn
k̂h−→ b1,hS1 + b2,hS2 + . . . + bn,hSn,

the corresponding ordinary differential equations (ODEs)read [7]:

212 Event-driven Metamorphoses of P Systems

d [Si]

d t
=

h∑

ν=1

(
k̂ν · (bi,ν − ai,ν) ·

n∏

l=1

[Sl]
al,ν

)
with i = 1, . . . , n.

In order to obtain a concrete trajectory, all initial concentrations[Si](0) ∈ R+, i =
1, . . . , n are allowed to be set according to the needs of the reaction system.

Discretisation: Corresponding P SystemsΠPMA. The general form of a P system
ΠPMA emulating the dynamical behaviour of chemical reaction systems with strictpri-
oritisationof reaction rules based on discretisedmass-actionkinetics is a construct

ΠPMA = (V, Σ, [1]1, L0, R, K)

whereV denotes the system alphabet containing symbol objects (molecular species) and
Σ ⊆ V represents the terminal alphabet.ΠPMA does not incorporate inner membranes,
so the only membrane is the skin membrane[1]1. The single membrane property results
from the assumption of spatial globality in well-stirred reaction vessels. Within a single
vessel, the finite multisetL0 ⊂ V × (N ∪ {∞}) holds the initial configuration of the
system.

We formulate reaction rules together with their kinetic constants by the system com-
ponentsR andK. The finite setR = {r1, . . . , rh} subsumes the reaction rules while
each reaction ruleri ∈ 〈Ei〉×〈Pi〉 is composed of a finite multiset of reactants (educts)
Ei ⊂ V × N and productsPi ⊂ V × N. Multiplicities of elements correspond with
according stoichiometric factors. Furthermore, a kineticconstantki ∈ R+ is attached
to each reactionri formingK = {k1, . . . , kh}.

Since we strive for a deterministic P system, a strict prioritisation among reaction rules
is introduced in order to avoid conflicts that can appear if the amount of molecules in
the vessel is too low to satisfy all matching reactions. In this case, running all match-
ing reactions in parallel can lead to the unwanted effect that more reactant molecules
are taken from the vessel than available violating conservation of mass. Prioritisation
provides one possible strategy to select applicable reaction rules in contrast to random
decisions (introduction of stochasticity) or separate consideration of the combinato-
rial variety (nondeterministic tracing). For large amounts of molecules in the vessel, the
strategy of conflict handling has no influence to the dynamical system behaviour and can
be neglected. We define the priority of a reaction rule by its index:r1 > r2 > . . . > rh.

For better readability, we subsequently write a reaction rule ri =
({

(e1, a1),

. . . , (eµ, aµ)
}
,
{
(q1, b1), . . . , (qv, bv)

})
with supp(Ei) = {e1, . . . , eµ} andsupp(Pi)

= {q1, . . . , qv} as well as kinetic constantki by using the chemical denotationri :

a1 e1 + . . . + aµ eµ
ki−→ b1 q1 + . . . + bv qv.

Event-driven Metamorphoses of P Systems 213

Finally, the dynamical behaviour of P systems of the formΠPMA is specified by an
iteration scheme updating the system configurationLt at discrete points in time starting
from the initial configurationL0 whereas a second indexi = 1, . . . , h reflects interme-
diate phases addressing the progress in employing reactions:

Lt,0 = Lt

Lt,i = Lt,i−1 ⊖
{(

a,

⌊
ki · |Ei ∩ {(a,∞)}| ·

∏

b∈supp(Ei)

|Lt,i−1 ∩ {(b,∞)}||Ei∩{(b,∞)}|

⌋) ∣∣∣ ∀a ∈ supp(Ei)

∧
(
|Lt,i−1 ∩ {(c,∞)}| ≥ |Ei ∩ {(c,∞)}| ∀c ∈ supp(Ei)

)}

⊎
{(

a,

⌊
ki · |Pi ∩ {(a,∞)}| ·
∏

b∈supp(Ei)

|Lt,i−1 ∩ {(b,∞)}||Ei∩{(b,∞)}|

⌋) ∣∣∣ ∀a ∈ supp(Pi)

∧
(
|Lt,i−1 ∩ {(c,∞)}| ≥ |Ei ∩ {(c,∞)}| ∀c ∈ supp(Ei)

)}

Lt+1 = Lt,h.

The iteration scheme modifies the system configuration by successive application of
reaction rules according to their priority in two stages. The first stage identifies the
reactants of a reaction. For this purpose, the required amount of each reactant molecule
a ∈ supp(Ei) is determined by the kinetic constantki, the stoichiometric factor ofa
(obtained by|Ei∩{(a,∞)}|), and the product of all discretised reactant concentrations.
Therefore, the term|Lt,i−1 ∩ {(b,∞)}| describes the number of moleculesb currently
available in the vessel. Since a reaction is allowed to become employed if and only if it
can be satisfied, the constraint|Lt,i−1 ∩ {(c,∞)}| ≥ |Ei ∩ {(c,∞)}| ∀c ∈ supp(Ei)
checks this property. Along with removal of reactant molecules (multiset difference⊖),
corresponding product molecules are added (⊎) to obtain the intermediate configuration
Lt,i after taking reactionsr1, . . . , ri into consideration.

In order to adapt reaction rates for discretisation, primary kinetic constantŝki defined
in the continuous ODE approach have to be converted into counterparts for the discrete
iteration scheme by using the transformation

ki =
k̂i

V|Ei|
·∆t.

214 Event-driven Metamorphoses of P Systems

Here,V ∈ R+ \ {0} expresses the volume of the reaction vessel while the exponent
|Ei| declares the sum of all stoichiometric factors of reactantsoccurring in reactionri.
Constant∆t ∈ R+ \ {0} specifies the discretisation interval.

In each time step, the P systemΠPMA generates the multiset output

Ot = Lt ∩ {(w,∞) | w ∈ Σ}

which can either be interpreted as natural numbersnt = |Ot| over time or contribute to
the formal languageL(ΠPMA) = supp (

⊎∞
t=0 Ot) ⊆ Σ.

System Classification and Properties. ΠPMA belongs to deterministic P systems
with symbol objects, strict prioritisation of reaction rules, and progression in time ac-
cording to mass-action kinetics that is time- and value-discretely approximated by a
stepwise adaptation. Its principle of operation follows the idea of formulating one-vessel
reaction systems together with their dynamical behaviour.

Obviously, P systemsΠPMA can emulate finite automataM . To this end, each transition

(q, a) 7→ q′ is transformed into a reactionq + a
1−→ q′ + a. Taking all final states as

terminal alphabet,L(ΠPMA) = ∅ iff L(M) = ∅ holds.

From the perspective of computational completeness, P systemsΠPMA as defined be-
fore cannot reach Turing universality: Although system configurations might represent
any natural number, we need to define an explicit control mechanism able to address
dedicated items (configuration components) for arbitrary incrementation, decrementa-
tion, and comparison to zero. Due to definition of mass-action kinetics, the number
of molecules processed within one application of a reactionrule depends on the total
amount of these molecules in the whole system. It seems that reaction rules should be
variableduring system evolution in order to enable enough flexibility. Allowing dynam-
ical changes of kinetic constants or stoichiometric factors along with addition/deletion
of reactions provides this flexibility, see Section 4.

3 Transitions between P Systems ΠPMA

In this section, we describe a framework enabling transitions between deterministic P
systemsΠPMA on the fly. Initiated by an external trigger at a defined point in time,
a transition manages three switching activities: Firstly,the running system stops its
evolution. Secondly, the (only) resulting configuration ofthat system is mapped into
the initial configuration of the subsequent system. This includes integration of possibly
new species together with their initial number of copies putinto the vessel as well as
removal of vanished species iff specified. Reactions inR and kinetic parameters inK
are replaced. Thirdly, the subsequent system is set into operation.

Event-driven Metamorphoses of P Systems 215

For formulation of the transition framework, we utilisestate transition systems[19]
denoted as constructA = (Q, T, I, ∆, F) with a setQ of states (not necessarily finite
but enumerable), an alphabetT of input symbols, a setI ⊆ Q of initial states, the
transition relation∆ ⊆ Q × T × Q, and a setF ⊆ Q of final states. In general, state
transition systems are known to be nondeterministic allowing multiple transitions. For
our objective, we arrange the components as follows:

Q = {Π(j)
PMA | (j ∈ A) ∧ (A ⊆ N)}

T ⊆ {(t = τ) | (τ ∈ B) ∧ (B ⊆ N)} ∪
{([a] CMPκ) | (CMP∈ {<,≤, =, 6=,≥, >})∧ (κ ∈ N) ∧ (a ∈ V (j)) ∧

(Π
(j)
PMA = (V (j), Σ(j), [1]1, L

(j)
0 , R(j), K(j)) ∈ Q) ∧ (j ∈ A)}.

While each state inQ is represented by a dedicated P systemΠPMA, the input alphabet
T contains a number of constraints (triggering events) with regard to progress in oper-
ation time(t = τ) or achievement of designated molecular amounts([a] CMPκ). We
assume that these constraints are related to the P system inQ currently in operation.

Each transitionΠ(j)
PMA

c7→ Π
(m)
PMA ∈ ∆ from Π

(j)
PMA = (V (j), Σ(j), [1]1, L

(j)
0 , R(j),

K(j)) to Π
(m)
PMA = (V (m), Σ(m), [1]1, L

(m)
0 , R(m), K(m)) triggered byc ∈ T allows

addition of new species to system alphabetsV (j) andΣ(j). Here, added species form
setsAdditionalSpeciesV (j,m) andAdditionalSpeciesΣ(j,m) with Additional

SpeciesV (j,m) ∩ V (j) = ∅ andAdditionalSpeciesΣ(j,m) ∩ Σ(j) = ∅. Furthermore, a
speciesa is allowed to vanish if and only if[a] = 0. Corresponding setsVanishedSpecies

V(j,m) ⊂ V (j) andVanishedSpeciesΣ(j,m) ⊂ Σ(j) contain vanishing species. Within a

transitionΠ
(j)
PMA

c7→ Π
(m)
PMA, new reactions might appear restricted to reactants and prod-

ucts available inV (m). New reactionsri ∈ 〈V (m)×N〉×〈V (m)×N〉with unique priority
index i become accumulated by the multisetAdditionalReactions (j,m) together with
assigned kinetic constantski ∈ R+ subsumed in the setParsAdditionalReactions (j,m).
Accordingly, we consider vanishing reactions present in multisetVanishedReactions(j,m)

and their kinetic parameters stored inParsVanishedReactions (j,m)). The scheme

V (m) = V (j) ∪AdditionalSpeciesV (j,m) \VanishedSpeciesV (j,m)

Σ(m) = Σ(j) ∪AdditionalSpeciesΣ(j,m) \VanishedSpeciesΣ(j,m)

L
(m)
0 = L

(j)
t ⊎ {(a, 0) | a ∈ AdditionalSpeciesV (j,m)}

R(m) = R(j) ⊎ AdditionalReactions (j,m) ⊖VanishedReactions(j,m)

K(m) = K(j) ∪ ParsAdditionalReactions (j,m) \ ParsVanishedReactions (j,m)

decomposes the P system transition into all single components. After performing the
transition, the obtained systemΠ(m)

PMA includes reactionsR(m) = {ri | (i ∈ A)∧ (A ⊂

216 Event-driven Metamorphoses of P Systems

N)} and corresponding kinetic parametersK(m) = {ki | (i ∈ A) ∧ (A ⊂ N)} where
A is an arbitrary finite subset of natural numbers. In order to preserve the strict prioriti-
sation among reaction rules, pairwise distinctive indexesi are required in each set.

4 Chemical Register Machines with Self-Reproducible
Components

In the first example, we apply transitions between P systems to formulate a chemical
register machine on binary numbers with self-reproduciblecomponents for bit storage
units. Each time new storing capacity within a register is needed, a specific reaction
subsystem for that purpose is added. A strict modularisation of the reaction network
forming bit storage units (chemical implementation of master-slave flip-flops) facil-
itates the system design towards achieving computational completeness. A chemical
representation of binary numbers noticeably increases thereliability of operation from
an engineering point of view.

Register Machines on Binary Numbers. A register machine on binary numbers is
a tupleM = (R, L, P, #0) consisting of the finite set of registersR = {R1, . . . , Rm}
each with binary representation of a natural numberRh ∈ {0, 1}∗, a finite set of jump
labels (addresses)L = {#0, . . . , #n}, a finite setP of instructions, and the jump
label of the initial instruction#0 ∈ L. Available instructions are:#i : INC Rh #j

(increment registerRh and jump to#j), #i : DEC Rh #j (nonnegatively decrement
registerRh and jump to#j), #i : IFZ Rh #j #p (if Rh = 0 then jump to#j

else jump to#p), and#i HALT (terminate program and output register contents). We
assume a pre-initialisation of input and auxiliary registers at start with input data or
zero. Furthermore, a deterministic principle of operation, expressed by unique usage of
instruction labels:∀p, q ∈ P | (p = #i : v) ∧ (q = #j : w) ∧ ((i 6= j) ∨ (v = w)), is
supposed.

Chemical Encoding of Binary Values. Each boolean variablex ∈ {0, 1} is repre-
sented by two correlated speciesXT andXF with complement concentrations[XT] ∈
R+ and[XF] ∈ R+ such that[XT]+[XF] = c holds withc = const.The boolean value
of the variablex is determined whenever one of the following conditions is fulfilled: The
inequality[XT][[XF] indicates “false” (x = 0) and[XF][[XT] “true” (x = 1). In case
of none of these strong inequalities holds (e.g.[XT] = 0.6c and [XF] = 0.4c), the
system would consider the variablex to be in both states.

A Chemical Clock by Extending an Oscillating Reaction Network. A chemical im-
plementation of a clock is necessary in order to synchronisethe register machine instruc-
tion processing. Positive edges of clock signals can trigger micro-operations like register
increment or jump to the next machine instruction. In our chemical machine model, an

Event-driven Metamorphoses of P Systems 217

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300

C
on

ce
nt

ra
tio

n

Time scale

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 50 100 150 200 250 300

C
on

ce
nt

ra
tio

n

Time scale

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 50 100 150 200 250 300

C
on

ce
nt

ra
tio

n

Time scale

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 50 100 150 200 250 300

C
on

ce
nt

ra
tio

n

Time scale

F
0O

T
1OF

1O
ks

ks

0.1

T
3OF

3O
ks

ks

T
2OF

2O
ks

ks

T
0O

T
0O][

T
1O][

T
2O][

T
3O][

C1 C2

1C][2C][

T
iO F

iO F
iO

F
iO T

iO T
iO

kmo

kmo

C1 C2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

0.10.1

W1P
0.1

2P

reactions
maintaining
i = 1, ..., 3+2 3

+2 3

cycle offset between

nonoverlapping clock

1|2C

and

Fig. 4.1 Generation of chemical clock signals[C1], [C2] (right) by cascadisation of toggle
switches (left)

extended oscillating reaction network provides all clock signals. As preferred network
template for permanent oscillation, we adopt the well-studied Belousov-Zhabotinsky
reaction [2,22] depicted in the upper-left part of Figure 4.1 whose dynamical behaviour
results in periodic peak-shaped signals. By using a cascadeof downstream switching
and maintaining reactions, we extend that primary oscillator. In this way, a normali-
sation with respect to signal shape and concentration course can be reached. Our idea
employs both converse output signalsOT

i andOF
i of the previous cascade stage as trig-

gers for a subsequent chemical toggle switch. Thus, high andlow concentration levels
are more and more precisely separated over the time course, and the switching delay
in between becomes shortened, see lower-left parts of Figure 4.1. After three cascade
stages, the quality of the chemical clock signal turns out tobe suitable for our purposes.

For technical reasons (two-phase register machine instruction processing), two offset
clocks with designated output speciesC1 andC2 are employed. Owning the same net-
work structure, they only differ in the time point when coming into operation caused by
individual initialisations (species producing clock signals C1: [OF

0,C1
](0) = 2,

[OT
0,C1

](0) = 1; corresponding species for clock signalsC2: [OF
0,C2

](0) = 0, [OT
0,C2

](0) =
0; species with identical initial concentrations:[P1,C](0) = 3, [P2,C](0) = 1, [WC](0) =
0, [OF

i,C](0) = 1, [OT
i,C](0) = 0), i ∈ {1, 2, 3}, C ∈ {C1, C2}). C1 andC2 provide

nonoverlapping clock signals whose offset constitutes approximately one half of the
clock cycle, see Figure 4.1 right.

218 Event-driven Metamorphoses of P Systems

Constructing Master-Slave Flip-Flops and Binary Registers. We introduce a reac-
tion network that mimics a master-slave flip-flop (MSFF) based on the aforementioned
chemical clocks and bit manipulating reaction motifs. Moreover, a chain of MSFFs
forms a registerRh (h ∈ {1, . . . , |R|}) with bitwise extendable initial length of one bit.
In operation, it processes binary numbers. . . blhblh−1 . . . b2b1 with bα ∈ {0, 1}. Fur-
thermore, each register is equipped with predefined triggers in order to carry out micro-
operations “increment”, “nonnegative decrement”, and “comparison to zero”, each of
which is processed within one clock cycle.

Within a MSFF, bit setting is coupled to specific edges of the clock signal in order to
prevent premature switches. In our MSFF implementation, bit setting consists of two
phases (master and slave part). Within the master part, a bitcan be preset using specific
master speciesMT and MF co-triggered by positive edges of the clock signalC1,
while the subsequent slave part finalises the setting by forwarding the preset bit from
the master species to the correlated slave speciesST andSF triggered by positive edges
of the offset clock signalC2. A subnetwork consisting of eight switching reactions (see
darkest grey highlighted boxes within each MSFF in Figure 4.2) covers this task.

With regard to the functionality of a register machine, a sequence of interconnected
MSFFs represents a register. Interconnections between neighboured MSFFs reflect the
capability of incrementing and decrementing register contents. In case of incrementa-
tion, designated trigger moleculesINC

j
h effect a successive bit flipping: Starting from

the least significant bitb1, “1” is consecutively converted into “0” until “ 0” appears
first time which is finally converted into “1”. Intermediate carry speciesF I

α act as for-
warding triggers between consecutive bits, see Figure 4.2.If the most significant bitblh

is reached increasing the concentration of carry speciesF I
lh

, six new speciesMT
lh+1,

MF
lh+1, ST

lh+1, SF
lh+1, FD

lh+1, andF I
lh+1 are added to the reaction system together with

the corresponding set of reactions forming the subnetwork for managing bitblh+1 in-
cluding update ofMF

lh+1 andMT
lh+1 within reactions performing comparison to zero,

see Figure 4.2.

Decrementation is organised in a similar way using initial triggersDEC
j
h and inter-

mediate molecules of carry speciesFD
β . In order to achieve nonnegative processing, a

speciesEF
h indicating equality to zero, set by a satellite network, prevents decremen-

tation of binary strings0 . . . 0. Figure 4.2 shows the reaction network structure of a
register whose speciesF I

α, FD
β , MF

γ , MT
γ , SF

γ , andST
γ are specific with respect to both

register identifierh and bit positionlh within the register. Any comparison to zero is
done by a satellite network which uses presence of any speciesMT

κ with κ = 1, . . . , lh
as triggers in order to flip an equality indicator bite (speciesET

h andEF
h) onto “0”,

while all speciesMF
κ with κ = 1, . . . , lh are needed for flipping onto “1”, respectively.

The indicatore can be used for program control, see next section. As a further byprod-
uct of each micro-operation on a register, molecules of the form #j ∈ L encoding the
jump label of the subsequent machine instruction are released.

E
ven

t-d
riven

M
etam

orp
h
o
ses

o
f
P

S
ystem

s
2

1
9

FM

TMFM

TS
FS TS

TMFM

TSFS

FM TM

FS TS

TMFM

FS TS

TMFM

TM

FS

FMTM

TS

TS

TS

TS

hl

FS

FS sk

sk

C2C1

i
FX i

FXiXT km+ 2 3 i
TXi

FX i
TXkm2+ 3

FEh

FM TM

FM

FS hl

hl

hl

hl

hl

hl hlhl

FS

hl

hl

hl

TM
hlhlhlhl

FM

#j#j

#j #j

j
hDEC INC j

h

b1 b2 b hl

FM1M1
T TM2

FM2
TM hl

FM
hl #j

TEh
FEh

FS ST

TMFM

TS

TMFM

1

11

1 sk

ks

FS

1

11

1

ks

sk

F D

I

2

...

2

2

22

2 2

2

2 2

2

22

2

DF

I

D

F IF

C D
2F

1C

1

1C

2F I

TM

ST

C C
F1

1 1

1

1

1

1

C C

1 1

11

11

1

2C

1C

1C

1C

1C

C

2

1

2

FSk

k

s

s

INC j
h

DEC j
h DEC j

h

INC j
h

hl

Fhl −1

hl −1

hl

...

...

...

...
sk

sk

sk

sk

{M, S}∋i = 1, ..., lh X

F
ig.4.2

C
hem

icalreaction
netw

ork
of

a
register

capable
of

processi
ng

a
bitw

ise
extendable

bi-
nary

num
ber...b

l
h
b
l
h
−

1
...b

2
b
1

w
ith

b
α

∈
{
0
,1
}

including
interfaces

for
m

icro-operations
increm

ent,nonnegative
decrem

ent,and
com

parison
to

zero.

220 Event-driven Metamorphoses of P Systems

bk

sk

sk
kp kp kp

kp

bk

sk
sk

register R1
register R1

INC

E EF T

DEC

C1 CC C2 2 2

#
HALT

1
1
1#

#

C1 C1

#
0 1 1

1 1

2

3 1

1
IFZ 2,3

3rd clock cycle 4th clock cycle2nd clock cycle1st clock cycle

Fig. 4.3 Example of the chemical program control for reg-
ister machine M = ({R1}, {#0, . . . , #3}, P, #0) with
P = {#0 : INC R1 #1, #1 : IFZ R1 #2 #3, #2 : HALT, #3 : DEC R1 #1}

Implementing a Chemical Program Control. A sequence of reactions directly de-
rived from the given programP of the underlying register machineM = (R, L, P, #0)
carries out the program control as follows: For each jump label #j ∈ L we introduce a
dedicatedlabel species#j with initial concentrations[#0](0) = 1 and[#κ](0) = 0 for
κ ∈ {1, . . . , |L|−1}. Accordingly, a set ofinstruction speciesIν ∈ {INC

j
h,DEC

j
h | ∀h

∈ {1, . . . , |R|} ∧ ∀j ∈ {0, . . . , |L| − 1}} ∪ {IFZ
j,q
h | ∀h ∈ {1, . . . , |R|} ∧ ∀j, q ∈

{0, . . . , |L| − 1}}∪ {HALT} is created with initial concentration[Iν](0) = 0. Further-
more, for each instruction inP a network motif consisting of aprogram-control reaction
with kinetic constantkp < ks and a consecutivebypass reactionwith kb ≤ ks is defined.
Following the two-phase structure of a register machine instruction, these reactions first
consume its incipient label species, then produce the corresponding instruction species
as an intermediate product and finally convert it into the label species of the subsequent
instruction if available. In order to strictly sequentialise the execution of instructions
according to the programP , clock speciesC1 andC2 with offset concentration course
provided by both oscillators trigger program-control and bypass reactions alternating as
catalysts.

The set of reactions for each type of register machine instruction is defined as follows:

instruction reactions

#i : INC Rh #j #i + C2
kp−→ INC

j
h + C2

INC
j
h + C1

kb−→ #j + C1

#i : DEC Rh #j #i + C2
kp−→ DEC

j
h + C2

DEC
j
h + C1

kb−→ #j + C1

#i : IFZ Rh #j #q #i + C2
kp−→ IFZ

j,q
h + C2

IFZ
j,q
h + ET

h + C1
ks−→ #j + ET

h + C1

IFZ
j,q
h + EF

h + C1
ks−→ #q + EF

h + C1

#i : HALT #i + C2
kp−→ HALT + C2

Event-driven Metamorphoses of P Systems 221

Instruction species of the formINC
j
h act as triggers for incrementing the contents of

registerRh done within its reaction network part, see Figure 4.2. Here,INC
j
h is con-

verted into the byproduct#j that provides the label species of the subsequent instruc-
tion. Accordingly, speciesDEC

j
h initiate a set of reactions decrementing registerRh

nonnegatively. Instruction species of the formIFZ
j,q
h utilise a reaction network mod-

ule attached to registerRh that releases two speciesET
h andEF

h whose concentrations
indicate whether or notRh = 0. Instruction species of the formINC

j
h, DEC

j
h, and

IFZ
j,q
h react into the corresponding label species#j and#q. Since there is no reaction

with instruction speciesHALT as reactant, the program stops in this case. Figure 4.3
illustrates an example of a chemical program control that also gives an overview about
the interplay of all predefined modules.

Although instruction species are consumed within registermodules, this process could
be too slow in a way that a significant concentration of an instruction species outlasts the
clock cycle. This unwanted effect is eliminated by bypass reactions running in parallel
to the designated register operation.

Case Study: Integer Addition. A chemistry processingR2 := R2 + R1; R1 := 0
including previous register initialisation(R1, R2) := (2, 1) on extendable bit word reg-
isters emulates a case study of the integer addition “2 + 1” whose dynamical behaviour
usingks = 3, km = 1, kmo = 3, kb = 0.5, kp = 1 is shown in Figure 4.4 (upper part).

Starting with empty one-bit chemical registersR1 = 0 andR2 = 0, the primary P
systemΠ

(0)
PMA is set into operation. Along with the second incrementationof R1, con-

centration of the carry speciesF I
1,1 becomes> 0 initiating the first P system transition

into Π
(1)
PMA, see Figure 4.4 (lower part). This system contains additional species and

reactions (according to Figure 4.2) to enlarge registerR1 onto two bits. FourC2 clock
cycles later, carry speciesF I

2,1 reaches a positive concentration transformingΠ
(1)
PMA into

Π
(2)
PMA by extending the chemical registerR2 from one into two bit storage capacity.

All simulations of the dynamical register machine behaviour were carried out using
CellDesigner version 3.5.2, an open source software package for academic use [9]. The
register machine (available from the authors upon request)was implemented in SBML
(Systems Biology Markup Language) [11], a file format shown to be suitable for P
systems representation [15].

5 Evolutionary Construction of Reaction Networks

Artificial evolution of reaction networks towards a desireddynamical behaviour is a
powerful tool to automatically devise complex systems capable of computational tasks.
We have designed and implemented a software (SBMLevolver) [12] for evolutionary

222 Event-driven Metamorphoses of P Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700 800

C
on

ce
nt

ra
tio

n

Time scale

>
 0

>
 0

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700 800

C
on

ce
nt

ra
tio

n

Time scale

Π
Π

Π

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700 800

C
on

ce
nt

ra
tio

n

Time scale

01 10 10 10 01 01 01 00 00 0000
00 00 01 01 01 10 10 10 11 1100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700 800

C
on

ce
nt

ra
tio

n

Time scale

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600 700 800

C
on

ce
nt

ra
tio

n

Time scale

C
2

M
1,

1
T

[
]

b
1

b
2

M
1,

2
T

[
]

M
2,

1
T

[
]

b
1

b
2

M
2,

2
T

[
]

IN
C

#
0

R
1
#

1
IN

C
#

1
R

1
#

2
IN

C
#

2
R

2
#

3
#

6
#

4
IF

Z
#

3
R

1

#
6
#

4
IF

Z
#

3
R

1

#
6
#

4
IF

Z
#

3
R

1
H

A
LT

#
6

IN
C

#
5

R
2
#

3

D
E

C
#

4
R

1
#

5

IN
C

#
5

R
2
#

3

D
E

C
#

4
R

1
#

5

P
M

A
(0

)

re
gi

st
er

R
2

b
1

re
gi

st
er

R
1

b
1

P
M

A
(1

)

re
gi

st
er

R
2

b
1

re
gi

st
er

R
1

b
2b

1

F
2,

1
I

[
]

P
M

A
(2

)

re
gi

st
er

R
2

b
2b

1

re
gi

st
er

R
1

b
2b

1

F
1,

1
I

[
]

cl
oc

k
re

gi
st

er
re

gi
st

er
R

2
R

1

Fig. 4.4 Dynamical behaviour of a chemical register machine acting as an adder (upper part) and
transitions between corresponding P systems successive enlarging storage capacity (lower part)

Event-driven Metamorphoses of P Systems 223

t = τ

t = τ

delete Y

t = τ

delete X
OutputX

Input1

Input2
k2

k1

Input1

Input2
k2

k1

Output

OutputX

Y

Input1

Input2
k2

k1

disconnect
Output
from r2 OutputX

Y

Input1

Input2

k1

k2

random or

network initialisation
template−based

Fig. 5.5 Part of a state transition system sketching the trace of an artificial structural evolution
towards a reaction network for addition of two numbers givenas initial concentrations of species
Input1 andInput2 . In the SBMLevolver, each network passes a separate supplementary param-
eter fitting (optimisation) of kinetic constants (not shown).

construction of single-compartmental biological models written in SBML. The SBMLe-
volver enables both, structural evolution (operators: adding/deleting species, adding/de-
leting reactions, connection/disconnection of a species to/from a reaction, species du-
plication) and network parameter fitting (adaptation of kinetic constants). Each reaction
network generated within the process of artificial evolution forms a P system of the class
ΠPMA. Evolutionary operators become activated randomly after adedicated period for
running a reaction network. When we understand evolutionary operators as (state) tran-
sitions between P systems, the arising phylogenetic graph (history of artificial evolution)
is related to the corresponding state transition system. Because state transitions between
P systems are not necessarily deterministic, the phylogenetic graph may have multiple
branches. An example in Figure 5.5 shows P system transitions sketching an artificial
evolution process towards a reaction network for addition of two numbers. In this pro-
cedure, selection can be incorporated by a network evaluation measure to be included
as a component ofΠPMA.

6 Conclusions

Formalisation of complex biological or chemical systems with structural dynamics within
their reaction rules can contribute to explore the potential of their functionality as a
whole. From the modelling point of view, coordination of temporally local subsystem
descriptions in terms of well-defined interfaces might be a challenging task since it
requires a homogeneous approach. The P systems framework inherently suits here be-
cause of its discrete manner and its ability to combine different levels of abstraction.

224 Event-driven Metamorphoses of P Systems

We have shown a first idea for arranging previously separate subsystems into a com-
mon temporal framework. In our approach, transitions between subsystems have been
initiated by constraints denoted as boolean expressions. Therefore, we allow for evalu-
ation of internal signals (molecular amount) as well as external signals (time provided
by a global clock). Beyond computational completeness, application scenarios are seen
in systems and synthetic biology. Further work will be directed to comprise P systems
of different classes and with compartmental structures into a common transition frame-
work.

Acknowledgements. This work is part of the ESIGNET project (Evolving Cell Sig-
nalling Networksin silico), which has received research funding from the European
Community’s Sixth Framework Programme (project no. 12789). Further funding from
the German Research Foundation (DFG, grant DI852/4-2) is gratefully acknowledged.

Bibliography

[1] U. Alon. An Introduction to Systems Biology.Chapman & Hall, 2006
[2] B.P. Belousov. A Periodic Reaction and Its Mechanism.Compilation of Abstracts

in Radiation Medicine147:145, 1959
[3] R.E. Blankenship.Molecular Mechanisms of Photosynthesis.Blackwell Science,

2002
[4] H.M. Brody et al.Phenotypic Plasticity.Oxford University Press, 2003
[5] K.A. Connors.Chemical Kinetics.VCH Publishers, 1990
[6] D. Debanne.Brain plasticity and ion channels. Journal of Physiology97(4-6):403-

414, 2003
[7] P. Dittrich et al. Artificial Chemistries: A Review.Artificial Life 7(3):225-275,

2001
[8] F. Fontana et al. Discrete Solutions to Differential Equations by Metabolic P Sys-

tems.Theor. Comput. Sci.372(1):165-182, 2007
[9] A. Funahashi et al. CellDesigner: a process diagram editor for gene-regulatory and

biochemical networks.Biosilico 1:159-162, 2003 (www.celldesigner.org)
[10] T. Hinze et al. Hill Kinetics Meets P Systems. In G. Eleftherakis et al. (Eds.)

Membrane Computing. LNCS4860:320-335, Springer Verlag, 2007
[11] M. Hucka et al. The systems biology markup language SBML: A medium for rep-

resentation and exchange of biochemical network models.Bioinformatics19(4):
524-531, 2003

[12] T. Lenser et al. Towards Evolutionary Network Reconstruction Tools for Systems
Biology. In E. Marchiori et al. (Eds.)Evolutionary Computation, Machine Learn-
ing and Data Mining in Bioinformatics. LNCS4447:132-142, Springer Verlag,
2007

[13] M.O. Magnasco. Chemical Kinetics is Turing Universal.Physical Review Letters
78(6):1190-1193, 1997

Event-driven Metamorphoses of P Systems 225

[14] V. Manca. Metabolic P Systems for Biomolecular Dynamics.Progress in Natural
Sciences17(4):384-391, 2006

[15] I. Nepomuceno et al. A tool for using the SBML format to represent P systems
which model biological reaction networks.Proceedings 3rd Brainstorming Week
on Membrane Computing.pp. 219-228, 2005

[16] G. Păun. Computing with Membranes.J.Comp.Syst.Sci.61(1):108-143, 2000
[17] G. Păun.Membrane Computing: An Introduction.Springer Verlag Berlin 2002
[18] D. Pescini et al. Investigating local evolutions in dynamical probabilistic P sys-

tems. In G. Ciobanu et al. (Eds.)Proceedings First International Workshop on
Theory and Application of P Systems.pp. 275-288, 2005

[19] G. Rozenberg, A. Salomaa (Eds.)Handbook of Formal Languages.Vol. I-III,
Springer Verlag Berlin, 1997

[20] Y. Suzuki, H. Tanaka. Symbolic chemical system based onabstract rewriting sys-
tem and its behavior pattern.Artificial Life and Robotics1(4):211-219, 1997

[21] C.G.N. Mascie-Taylor, B. Bogin (Eds.)Human Variability and Plasticity.Cam-
bridge University Press, 1995

[22] A.M. Zhabotinsky. Periodic Processes of Malonic Acid Oxidation in a Liquid
Phase.Biofizika 9:306-311, 1964

Effects of HIV-1 Proteins on the Fas-Mediated
Apoptotic Signaling Cascade: A Computational Study
of Latent CD4+ T Cell Activation

———————————————
John Jack1, Andrei Păun1,2,3, Alfonso Rodrı́guez-Patón2

1Louisiana Tech University, Department of Computer Science/IfM
P.O. Box 10348, Ruston, LA 71272, USA
{johnjack, apaun }@latech.edu

2Universidad Politécnica de Madrid, Departamento de Inteligencia Artificial,
Facultad de Informática
Campus de Montegancedo S/N, Boadilla del Monte, 28660 Madrid, Spain
arpaton@fi.upm.es

3National Institute of Research and Development for Biological Sciences,
Bioinformatics Department,
Splaiul Independenţei, Nr. 296, Sector 6, Bucharest, Romania

We present a new model for simulating Fas-induced apoptosisin HIV-1-infected
CD4+ T cells. Moreover, the reactivation of latently infected cells is explored.
The work, an extension of our previous modeling efforts, is the first attempt
in systems biology for modeling the Fas pathway in the latently infected cells.
These enigmatic cells are considered the last barrier in theelimination of HIV
infection. In building the model, we gathered what reactionrates and initial con-
ditions are available from the literature. For the unknown constants, we fit the
model to the available information on the observed effects of HIV-1 proteins in
activated CD4+ T cells. We provide results, using the Nondeterministic Waiting
Time (NWT) algorithm, from the model, simulating the infection of activated
CD4+ T cells as well as the reactivation of a latently infected cells. These two
model versions are distinct with respect to the initial conditions – multiplicities
and locations of proteins at the beginning of the simulation.

1 Introduction

1.1 Motivation for Study The human immunodeficiency virus (HIV) is remarkable
for several reasons: (1) it predominantlyinfects immune system cells; (2) shows a
high genetic variation throughout the infection in a single individual due to the high
error rate in the reverse transcription; (3) itinduces apoptosis, or cellular suicide, in
the “healthy” (bystander) immune cells; and (4) normal immune system function can
cause some HIV-infected T cells to becomelatent, entering a reversibly nonproductive

228 Modeling Fas-Mediated Apoptosis In Latent HIV-1-Infected CD4+ T Cells

state of infection. Since the latent cells are transcriptionally silent, they are virtually
indistinguishable from the uninfected cells. Also, the number of latently infected cells
is relatively small, around 3% of the T cells, which makes theexperimental study of
these cells difficult – current technology in biochemistry requires large numbers of the
molecules/cells to be studied. It is widely believed that the latently infected CD4+ T
cells represent the last barrier to an HIV cure. The current paper represents an initial
modeling effort for the apoptosis (programmed cell death) of latently infected T cells.

We will focus on the apoptotic modeling (reason 3), since it is the avenue through which
the virus destroys the effectiveness of the host’s immune system. We will base our model
on the previous modeling work of [21], using the simulation technique reported in [23].
Furthermore, in order to make the modeling effort easier anddue to the high genetic
variability (reason 2) of the viral genome, we will combine several similar processes
together into single reactions. The kinetic constants for the new reactions, modeling the
biochemical interactions involving viral proteins with the host cell, will be obtained by
fitting the model to reported experiments on the infected, nonlatent cells. Finally, we
will simulate the latent cells (immediately after they are reactivated) by adjusting the
appropriate initial conditions of the system.

1.2 AIDS Pathogenesis As far as we know, this paper reports the first attempt at
modeling the Fas-mediated apoptotic signaling pathway in reactivated latently infected
CD4+ T cells. Although there are two strains of HIV, type 1 andtype 2, we are interested
in HIV-1, since it is more virulent and transmissive [37]. HIV-1 is called a global pan-
demic by the World Health Organization (WHO). Since its discovery over two decades
ago, the virus has been the target of aggressive research. And yet, a cure – complete
eradication of the viral infection – remains out of reach. According to statistics from
the WHO, there were33.2 million people living with HIV in 2007,2.5 million newly
infected individuals, and2.1 million AIDS deaths [47].

The pathogenesis of AIDS is attributed to the depletion of the host’s CD4+ T cells, the
loss of which results in a dysfunctional immune system. Finkel et al. in [15] concluded
that HIV-1 infection causes death predominantly in bystander T cells. These healthy,
uninfected cells are marked for destruction by the neighboring HIV-1-infected cells.
The mechanism of the bystander cell death was shown to be apoptosis. Proteins en-
coded by the HIV-1 genome exhibit anti- and pro-apoptotic behavior on infected and
bystander cells, enhancing or inhibiting a cell’s ability to undergo apoptosis. There are
numerous drugs available for limiting the impact of HIV-1 onthe immune system; the
most successful approach, highly active anti-retroviral therapy (HAART), is a combi-
nation of several types of drugs, targeting different mechanisms of HIV-1 infection and
proliferation.

Although HAART has proven to be effective in the reduction orelimination of viremia
[34], it is ineffective in the complete eradication of the viral infection. Latent reservoirs
of HIV-1 have been detected in HIV-1-infected patients [9, 10]. Latently infected cells

Modeling Fas-Mediated Apoptosis In Latent HIV-1-Infected CD4+ T Cells 229

are relatively rare – about1 in 106 resting T cells [10]. However, they are considered
to be the largest obstacle in combating HIV-1 infection [16,42, 44]. Understanding the
mechanisms behind HIV-1 latency is a focal point for currentAIDS-related research
(for a recent review on latency see [19]).

There are two types of latency described in the literature. The first, preintegration la-
tency, refers to resting T cells containing unintegrated HIV-1 DNA. Since the uninte-
grated HIV-1 DNA is labile and reverse transcription of HIV-1 RNA is slow (on the
order of days) [35, 50, 51, 53], it is believed that patients with reduced viremia after
several months of HAART therapy do not have resting T cells with unintegrated HIV-1
DNA [7]. However, resting T cells with stably integrated HIV-1 DNA can provide a
reservoir for viral reproduction for years [16]. These reservoirs are the result of acti-
vated HIV-1-infected T cells that have returned to a quiescent state. Due to their long
lifespan, we have chosen to model the apoptotic events that follow the reactivation of
a postintegration latently infected CD4+ T cell. N.B., for the remainder of the paper,
when use the term latent, we are referring to the postintegration latency.

We have previously reported our results [23] from simulating the Fas-mediated apop-
totic signaling cascade, based on information for the Jurkat T cell line [21]. In [23],
we provided an exhaustive study on the feasibility of our Nondeterministic Waiting
Time (NWT) algorithm, comparing our results to an established ordinary differential
equations (ODEs) technique [21]. We have extended the Fas model, incorporating the
effects HIV-1 proteins have on the pathway.

In Section 2, we provide a brief summary of our simulation technique. Section 3 dis-
cusses the background information on the Fas pathway and HIV-1 proteins necessary
to understanding our model. Section 4 contains the results of our simulations. Finally,
Section 5 is a discussion of issues revolving around modeling HIV-1 protein activity
and future research plans for our group.

2 The NWT Algorithm

We refer the interested reader to [23], where we gave a detailed description of the NWT
algorithm. We will now highlight the key aspects of our simulation technique.

The NWT algorithm is a Membrane Systems implementation, where the alphabet of the
system is defined as proteins, and the rules are the reactionsinvolving the proteins. The
algorithm is mesoscopic, since individual molecules are employed instead of molecular
concentrations. This allows us to discretely interpret theevolution of the intracellular
molecular dynamics. We have argued in [23] that our discrete, nondeterministic algo-
rithm may outperform other continuous methods – for example, ODE simulations – in
situations of low molecular multiplicity.

All of the reactions within the system obey the Law of Mass Action – i.e., the amount

230 Modeling Fas-Mediated Apoptosis In Latent HIV-1-Infected CD4+ T Cells

of time required for any given reaction to occur is directly proportional to the number of
reactant molecules present in the system. The Law of Mass Action is used to calculate
a waiting time (WT) for each reaction, indicating the next occurrence of the reaction.
These values are based on kinetic constants and are deterministic – the nondetermin-
ism in our algorithm stems from reaction competition over low molecular multiplicity.
Our NWT algorithm is different than the Gillespie algorithm[17,18], where stochastic
values are generated to govern the reaction rates. We will use the NWT algorithm to
explore the effects of HIV-1 proteins on the Fas-mediated signaling cascade.

3 The Model

3.3 Fas-Mediated Apoptosis We have explored the literature pertaining to the ef-
fects of HIV-1 proteins on apoptosis: see [2,38,41] for reviews on HIV-1-related CD4+
T cell death. There are several distinct death receptors, which, upon activation of the
cell, can lead to cellular apoptosis through a tightly regulated molecular signaling cas-
cade [3]. In this paper, our concern is the Fas pathway. As reported in [22] and [36],
understanding the complex signaling cascade of Fas-mediated apoptosis can be benefi-
cial in developing remedies for cancer and autoimmune disorders.

In [40], the authors describe two signaling pathways for Fas-mediated apoptosis: type I
and type II. Both pathways begin with the Fas ligand binding to the Fas receptor (also
called CD95) on the cell membrane. This results in a conformational change at the
receptor, producing a complex, Fasc. The cytoplasmic domain of this complex recruits
Fas-associated death domain (FADD). A maximum of three FADDmolecules can be
recruited to each Fasc molecule. Once FADD is bound to Fasc, Caspase 8 and FLIP are
recruited competitively. Although three molecules of Caspase 8 can be recruited to each
Fasc-FADD binding, only two are required to create the dimer, Caspase8P41

2 , which is
released into the cytoplasm. The cytoplasmic Caspase8P41

2 is then phosphorylated into
active form (Caspase 8*). The binding of FLIP to Fasc inhibits apoptosis, because it
reduces the ability of Caspase 8 to become activated – i.e., FLIP can occupy binding
sites necessary for creation of Caspase8P41

2 .

Unless sufficiently inhibited, the Fas signaling cascade continues in the type I or type
II pathway. For sufficiently large Caspase 8 initial concentration, Caspase 3 is directly
phosphorylated by the Caspase 8*. This is the type I pathway.If the number of Cas-
pase 8 molecules is insufficient to induce Caspase 3 activation directly, then the type II
pathway is initiated. Caspase 8* truncates the Bid protein,tBid. The tBid protein can
then bind to two molecules of Bax. The complex formed by this binding leads to the re-
lease of Cytochrome c from the mitochondria. Once it is translocated to the cytoplasm,
Cytochrome c binds to Apaf and ATP, forming a complex that canrecruit and activate
Caspase 9 (Caspase 9*). The activated Caspase 9* proceeds toactivate Caspase 3. We
consider the activation of Caspase 3 to be the end of the signaling cascade, since its
active form signals DNA fragmentation [28].

Modeling Fas-Mediated Apoptosis In Latent HIV-1-Infected CD4+ T Cells 231

In [23], we modeled both the type I and type II Fas-induced apoptotic signaling path-
ways. In the next section, we discuss HIV-1 infection and itseffects on the Fas signaling
cascade.

3.4 HIV-1 Infection The mechanisms behind HIV-1 infection of CD4+ T cells are
well understood. A spike on the virus, the gp120 envelope glycoprotein, binds to the
CD4 receptor of the target cell and, in conjunction with subsequent binding to a core-
ceptor (CCR5 or CXCR4), a path is opened for the virus to inject its contents into the
cell [8, 48]. Reverse transcriptase creates cDNA from the HIV-1 RNA and the genome
of the virus is implanted into the cell’s own DNA for future production. During this
time, the immune system fails to detect and destroy the infected cell.

There is still some debate about the effects of HIV-1 proteins on cellular signaling net-
works; however, we have pooled the collective knowledge of the biological community
in order to categorize and model the described functions of various HIV proteins. For
an illustration of the Fas pathway and the involvement of theHIV proteins we refer the
reader to Fig. 3.1.

Upon infection, the contents of the virion (e.g., Vpr, HIV protease (HIVpr), reverse
transcriptase (RT), and HIV RNA (HIVRNA)) are released into the cytoplasm [6]. In the
newly infected, activated CD4+ T cell the HIVRNA is converted to cDNA (HIVcDNA)
by the reverse transcriptase about five hours post-infection [25]. The HIVcDNA is then
integrated into the host’s genome with the help of the viral integrase approximately
one hour later [14]. These rules are shown in Table 3.1. For our convenience, we have
labeled the integrated HIV genome asHIVLTR in our rules.HIVLTR is the basis for
interactions involving the HIV long terminal repeat; in ourmodel, it is a necessary
component for all reactions pertaining to HIV-1 protein production.

After integration of the viral DNA, gene expression of HIV proteins becomes possible.
The nuclear factor of activated T cells (NFAT) and NF-κB have been shown to play
important roles in HIV gene expression [26, 30]. In a restingCD4+ T cell, NF-κB is
sequestered in the cytoplasm by its inhibitor, IκB. Following cellular activation, NF-κB
is released by its inhibitor, which allows it to relocate to the nucleus where it can bind to
the HIVLTR. Also following T cell activation, NFAT, located in the cytoplasm of resting
CD4+ T cells, undergoes dephosphorylation and translocation to the nucleus where it
can bind to the HIVLTR [26]. Once NF-κB and NFAT are translocated to the nucleus,
they can bind to the HIVLTR, combining their efforts to synergistically enhance the
promoter activity. Moreover, [26] shows that the combined effects of Tat, NF-κB and
NFAT is much stronger than the pairings of Tat and NF-κB or Tat and NFAT. In our
model, we have combined the roles of NF-κB and NFAT. Hence, the translocation and
binding rules for NFAT (and NF-κB) are shown in Table 3.1.

Multiply spliced (MS) HIV-1 mRNAs – responsible for Tat/Revprotein creation – are
detectable in resting CD4+ T cells [27]. However, due to the inefficient export of the

232 Modeling Fas-Mediated Apoptosis In Latent HIV-1-Infected CD4+ T Cells

Table 3.1 A list of the reactions involving effects of HIV-1 proteins,which were added to the
existing Fas model [21,23]. See Appendix A for the complete list of reactions.

Reaction Reaction Rate

1: HIVRNA + RT→ HIVcDNA + RT k21

2: HIVcDNA → HIVcDNA (nuclear import) k22

3: HIVcDNA → HIVLTR k22

4: NFAT→ NFAT (nuclear import) k23

5: CDK9→ CDK9 (nuclear import) k24

6: CyclinT1 + CDK9→ PTEFb k25

7: NFAT + HIVLTR → HIVLTR:NFAT k26

8: HIVLTR:NFAT + Tat→ HIVLTR:NFAT:Tat k27

9: HIVLTR:NFAT:Tat + PTEFb→ HIVLTR:NFAT:Tat:PTEFb k28

10: HIVLTR → HIVLTR + mRNATat k29

11: HIVLTR → HIVLTR + mRNAV pr k29

12: HIVLTR → HIVLTR + mRNAHIVpr k29

13: HIVLTR → HIVLTR + mRNANef k29

14: HIVLTR:NFAT → HIVLTR:NFAT + mRNATat k30

15: HIVLTR:NFAT → HIVLTR:NFAT + mRNAV pr k30

16: HIVLTR:NFAT → HIVLTR:NFAT + mRNAHIVpr k30

17: HIVLTR:NFAT → HIVLTR:NFAT + mRNANef k30

18: HIVLTR:NFAT:Tat→ HIVLTR:NFAT:Tat + mRNATat k31

19: HIVLTR:NFAT:Tat→ HIVLTR:NFAT:Tat + mRNAV pr k31

20: HIVLTR:NFAT:Tat→ HIVLTR:NFAT:Tat + mRNAHIVpr k31

21: HIVLTR:NFAT:Tat→ HIVLTR:NFAT:Tat + mRNANef k31

22: HIVLTR:NFAT:Tat:PTEFb→ HIVLTR:NFAT:Tat:PTEFb + mRNATat k32

23: HIVLTR:NFAT:Tat:PTEFb→ HIVLTR:NFAT:Tat:PTEFb + mRNAV pr k32

24: HIVLTR:NFAT:Tat:PTEFb→ HIVLTR:NFAT:Tat:PTEFb + mRNAHIVpr k32

25: HIVLTR:NFAT:Tat:PTEFb→ HIVLTR:NFAT:Tat:PTEFb + mRNANef k32

26: mRNATat → mRNATat (nuclear export) k33

27: mRNANef → mRNANef (nuclear export) k33

28: mRNAV pr → mRNAV pr (nuclear export) k33

29: mRNAHIVpr → mRNAHIVpr (nuclear export) k33

30: mRNATat → mRNATat + Tat k34

31: mRNANef → mRNANef + Nef k34

32: mRNAV pr → mRNAV pr + Vpr k34

33: mRNAHIVpr → mRNAHIVpr + HIVpr k34

34: mRNATat → degraded k35

35: mRNANef → degraded k35

36: mRNAV pr → degraded k35

37: mRNAHIVpr → degraded k35

38: Tat⇋ Tat (nuclear import/export) k36f , k35r

Modeling Fas-Mediated Apoptosis In Latent HIV-1-Infected CD4+ T Cells 233

Fig. 3.1 A picture of the model for HIV-1 protein effects on Fas signaling. The activation of Cas-
pase 3 is the end of the signaling cascade – irrevocably leadsto cell death. The type I pathway
involves direct activation of Caspase 3 by Caspase 8*. The type II pathway requires signal ampli-
fication by way of the mitochondria, resulting in the activation of Caspase 3 by Caspase 9*. The
HIV-1 Tat protein upregulates inactive Caspase 8 and Bcl-2,but it can also downregulate Bcl-2.
Vpr upregulates Bcl-2 and downregulates Bax. HIV Protease can cleave Bcl-2 into an inactive
form and it can also cleave Caspase 8 into active Caspase 8. Finally, Nef protein upregulates Fas
ligand and Fas receptor.

mRNA transcripts to the cytosol, Tat and Rev proteins are undetectable in the latent
cells. Activation of these latent cells leads to productionof Tat and Rev, and subsequent
upregulation of all HIV-1 proteins. In order for the infected cells to create HIV proteins
other than Tat and Rev, the transcriptional elongation induced by Tat and the efficient
nuclear export of MS HIV-1 RNAs by Rev are required. Our latent cell model, beginning
with cellular activation, initially allows for inefficientcreation of Tat proteins. We chose
not to model Rev, since it has no known Fas apoptotic function; its exporting functions
are incorporated into the kinetic constants governing mRNAtranslocation. Once Tat is
located in the nucleus, it requires the help of two other proteins provided by the host
cell: CyclinT1 and CDK9.

234 Modeling Fas-Mediated Apoptosis In Latent HIV-1-Infected CD4+ T Cells

39: Tat→ Tat + Casp8 k37

40: Tat→ Tat + Bcl2 k38

41: Tat→ FasL + Tat k39

42: Tat + Bcl2→ Tat k40

43: Vpr + Bax→ Vpr k42

44: Vpr + Bcl2→ Vpr:Bcl2 k43

45: Vpr:Bcl2→ Vpr + Bcl2 k44

46: Vpr + PTPC→ Vpr:PTPC k45

47: Vpr:PTPC + Cyto.c→ Cyto.c∗+ Vpr:PTPC k46

48: HIVpr + Casp8→ HIVpr + Casp8∗ k47

49: HIVpr + Bcl2→ HIVpr k48

50: Nef→ Nef + Fas k49

51: Nef→ Nef + FasL k50

52: FasL→ FasL (to cell surface) k51

In an inactivated cell, CyclinT1 and CDK9 are sequestered inthe cytoplasm [31]. Upon
T cell activation, they are relocated to the nucleus. CyclinT1 and CDK9 combine to
make up the positive-acting transcription elongation factor (P-TEFb) complex. The
binding of P-TEFb and Tat at the HIVLTR allows the hyperphosphorylation of RNA
polymerase II (RNAPII), resulting in increased transcriptional elongation. The translo-
cation and binding rules for CyclinT1, CDK9 and Tat are formalized in Table 3.1. The
transcription, translocation, and translation rules involving HIV-1 mRNA molecules are
also summarized in Table 3.1.

3.5 HIV-1-Related Effects on the Fas Pathway Aside from its role in transcrip-
tional elongation, the Tat protein is responsible for both pro- and anti-apoptotic behav-
ior. In [4], the authors demonstrated that increased Tat expression causes upregulation
of inactive Caspase 8. Also, Tat has been associated with thedownregulation of Bcl-
2 [41]. Given the pro- and anti-apoptotic duties of Caspase 8and Bcl-2, respectively,
it appears that a cell with high levels of Tat has increased susceptibility to apopto-
sis. Conversely, [15] claims that Tat upregulates Bcl-2, resulting in decreased apoptotic
rates of cells. Tat has also been implicated in the upregulation of Fas ligand on the cell
surface [4, 49], which may effect the cell through autocrinesignaling. The anti- and
pro-apoptotic rules for Tat are found in Table 3.1.

The HIV-1 Vpr has been shown to both enhance and inhibit the Fas signaling cascade.
Upon infection, the∼700 molecules of Vpr in the virion are injected into the cytoplasm
of the cell [6]. At low levels, Vpr has been shown to prohibit apoptosis by upregulating
Bcl-2 and downregulating Bax [12]. However, higher concentrations of Vpr affects the
mitochondrial membrane permeability via interactions with the permeability transition
pore complex (PTPC), resulting in the release of Cytochromec into the cytoplasm [24].

Modeling Fas-Mediated Apoptosis In Latent HIV-1-Infected CD4+ T Cells 235

In the same paper, the authors also demonstrated that Bcl-2 can inhibit the effects of
Vpr on the PTPC. The various apoptotic roles of Vpr we define inTable 3.1.

Another protein packaged in HIV-1 virions, HIVpr, plays an important role in the Fas
pathway. The HIVpr has been shown to cleave Bcl-2 into a deactivated state [43],while
it also cleaves Caspase 8 [32] into active form. Both rules are pro-apoptotic and are in
Table 3.1.

Finally, we define two pro-apoptotic rules for the Nef protein. Zauli et al. discovered
in [52] that Nef can play a role in cell death by upregulating Fas receptor and Fas ligand
on the cell surface. Upregulating the receptor sites of Fas on the cell surface prepares
the cell for ligand binding, and can initiate the Fas-induced apoptotic signaling cascade.
The upregulation of Fas ligand may protect the infected cellfrom cytotoxic T cells, or it
could be part of autocrinic signaling. The four rules for upregulation and translocation
of Fas and Fas ligand are in Table 3.1.

4 Results

We added all of the rules from Table 3.1 to the Fas model described in [21, 23] – see
Appendix A for the complete list. From this, we are able to simulate two types of cells:
nonlatentand latent. The differences between the two models are the initial protein
multiplicities. Thenonlatentcell is an activated T cell which has just been infected
with the contents of the HIV-1 virion. The HIV-1 RNA and otherviral proteins are in
the cytoplasm. The HIV-1 RNA must be incorporated into the host’s genome before
the viral protein production begins. Thelatentmodel is a newly activated T cell with
no HIV-1 proteins present. However, the HIV-1 genome is already integrated into the
host’s DNA.

As we have discussed earlier, thenonlatentcell is used for the model fitting, since
the majority of information about HIV-1 proteins pertains to these types of cells. For
instance, in Fig. 4.2(a), the results from thenonlatentsimulation show the activity of
Tat in that full length (inactive) Caspase 8 increases by a factor of three. Our simulation
agrees with the observations of [4]. Also, in Fig. 4.2(b), our model shows Vpr-induced
upregulation of Bcl-2 and downregulation of Bax by30% and20%, resp. Our results
agree with the experimental results on Vpr described in [12].

We will next consider the activation of Caspase 3. In Fig. 4.3, both thenonlatentand
latentmodels are shown to exhibit the onset of apoptosis – total activation of Caspase
3 – after approximately two days. Our results indicate that reactivated latently infected
CD4+ T cells activate all of the Caspase 3 molecules earlier than thenonlatentmodel.
Also, in Fig. 4.3, we show the truncation of Bid, which is a necessary step in the induc-
tion of the type II pathway. Active Caspase 8 is responsible for the truncation of Bid, so
we are seeing the downstream effects of Caspase 8 activation.

236 Modeling Fas-Mediated Apoptosis In Latent HIV-1-Infected CD4+ T Cells

(a)
0 4 8 12 16 20 24 28 32 36 40 44 48

0

1

2

3

4

5

Time (Hour)

F
ul

l L
en

gt
h

C
as

pa
se

 8
 (

−
F

ol
d)

0 4 8 12 16 20 24 28 32 36 40 44 48
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

Time (Hour)

N
um

be
r

of
 M

ol
ec

ul
es

 (
%

)

Bcl−2
Bax

(b)

Fig. 4.2 (a) Tat protein upregulates Caspase 8 levels by three-fold.(b) Vpr upregulates Bcl-2 and
downregulates Bax by 30% and 20%, resp.

(a)
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56

0

2

4

6

8

10

12
x 10

4

Time (Hour)

F
ul

l L
en

gt
h

C
as

pa
se

 3
 (

M
ol

ec
ul

es
)

Latent
Nonlatent

(b)
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56

0

0.5

1

1.5

2
x 10

4

Time (Hour)

F
ul

l L
en

gt
h

B
id

 (
M

ol
ec

ul
es

)

Latent
Nonlatent

Fig. 4.3 (a)Total reduction of full length Caspase 3 is seen after∼ 40 hours in thelatentmodel,
whereas thenonlatentmodel takes∼ 47 hours. (b) The decline of Bid through interactions with
Caspase 8, leading to a rise in tBid.

Next, let us consider the mechanisms behind Caspase 3 activation in thelatentandnon-
latentmodels. According to the rules in Appendix A, an interactionbetween full length
Caspase 3 and active Caspase 8 or Caspase 9 can have two outcomes: the activation
of Caspase 3 or not. Both of our models show cooperation between the two pathways,
which is not explicitly stated in the literature. Thenonlatentresults (Fig. 4.4) show the
first interactions between Caspase 3 and Caspase 8* molecules occur just after 18 hours
into the run. It isn’t until∼ 10 hours later (26 hours into the run) that we begin to
see Caspase 3 interactions with Caspase 9*, after signal amplification through the mi-
tochondria. As discussed in [21, 23], given a sufficiently high initial concentration of
Caspase 8 in the cell, signal amplification is not necessary to induce apoptosis. For this
model, we set the initial level of Caspase 8 to be insufficientfor apoptosis by the type I
pathway.

The results of thelatentsimulation are similar to thenonlatent, where both pathways
appear to govern Caspase 3 activation. In thelatentrun (Fig. 4.5), we see type I inter-

Modeling Fas-Mediated Apoptosis In Latent HIV-1-Infected CD4+ T Cells 237

(a)
1920 1921
0

1

2

3

4

5

Time (Hour)
N

um
be

r
of

 In
te

ra
ct

io
ns

Type I
Type II

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56
0

1

2

3

4

5

Time (Hour)

N
um

be
r

of
 In

te
ra

ct
io

ns

Type I
Type II

(b)

Fig. 4.4 These graphs show the type I and type II pathways working together to activate Caspase 3
during thenonlatentsimulation. The type I interactions are active Caspase 8 binding with Caspase
3, and the type II interactions are Caspase 9 binding with Caspase 3. (a) The overall picture for
the whole three days of simulation. (b) One minute from the simulation (from 32 hours to 32
hours and 1 minute) illustrates the rate of interactions.

actions first occur about 12 hours into the simulation, whiletype II molecular binding
occurs after 21 hours.

(a)
1920 1921
0

1

2

3

4

5

Time (Hour)

N
um

be
r

of
 In

te
ra

ct
io

ns

Type I
Type II

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56
0

1

2

3

4

5

Time (Hour)

N
um

be
r

of
 In

te
ra

ct
io

ns

Type I
Type II

(b)

Fig. 4.5 These graphs show the type I and type II pathways working together to activate Caspase
3 during thelatentsimulation. They are similar to thenonlatentrun. (a) The overall picture for the
whole three days of simulation. (b) One minute from the simulation (from 32 hours to 32 hours
and 1 minute) illustrates the rate of interactions.

Although Fig. 4.4(b) and Fig. 4.5(b) imply type I interactions occur more frequently
than type II, it must be noted that, due to the kinetics governing these binding rules,
Caspase 8* can remain bound to Caspase 3 for a longer period oftime than Caspase
9*. Therefore, although it seems that Caspase 8* binds to Caspase 3 more frequently,
the reactions are merely slower. In fact, both models exhibit more interactions between
Caspase9* and Caspase 3.

5 Discussion

Based on the biological evidence in the literature, we constructed a model for the effects
of HIV-1 proteins on the Fas-mediated apoptosis pathway. This work is the first of its
kind, simulating Fas-induced apoptosis in reactivated latently infected CD4+ T cells. We

238 Modeling Fas-Mediated Apoptosis In Latent HIV-1-Infected CD4+ T Cells

have provided some preliminary results in an effort to understand CD4+ T cell latency.
Interestingly, our results show a cooperation between the type I and type II pathways.
We have not been able to verify an explanation for this in the available literature.

We are interested in extending this model in several ways. For instance, we would like
to model the effects of HIV-1 proteins on bystander cell apoptosis. As mentioned in the
introduction, HIV-1 appears to primarily kill uninfected bystander T cells [15]. Various
mechanisms have been reported for the destruction of the bystander cells. Along with
Fas-induced apoptosis, other possible mechanisms for bystander cell death are reviewed
in [2,38,41]. Upon being exocytosed by an infected cell, several of the proteins encoded
in HIV-1 can exhibit destructive qualities when interacting with neighboring bystander
cells – either on the surface or through endocytosis.

There are a few HIV-1 proteins we have ignored in this model, because they affect
T cells in ways not within the scope of our current efforts. For example, soluble and
membrane-bound Env can bind to the CD4 receptor of bystandercells. In [11] and [5],
the authors have shown that ligation of the CD4 receptor by Env, is sufficient to increase
apoptosis in bystander cells. The reasons for the increasedapoptotic rates following
Env-CD4 binding can be attributed to Bcl-2 down-regulation[20], increased Caspase 8
activation [1], and upregulation of Fas [33], FasL and Bax [41].

Extracellular Tat can enter bystander cells through endocytosis, which leads to pro-
apoptotic activity. The addition of Tat to a culture of uninfected cells has been shown
to increase apoptosis [29]. Endocytosed Tat can upregulatelevels of Caspase 8 [4] and
increase expression of the Fas ligand [41], interfering in the same manner as in the
infected cells. Also, extracellular Vpr can disrupt the mitochondrial membrane, leading
to increased translocation of Cytochrome c* [41].

Finally, we would like to note that the experimental information on the latent HIV-1-
infected CD4+ T cells is scarce, due to the fact that these cells are found in such small
numbersin vivo. Therefore, our model relies heavily on applying the knowledge of
activated HIV-1-infected CD4+ T cells. We look forward to new experimental results
about these enigmatic cells, which we will use to refine the model.

Acknowledgements. We gratefully acknowledge support in part from a NSF GK-
12 Ph.D. fellowship, support from NSF Grant CCF-0523572, support from LA BoR
RSC grant LEQSF (2004-07)-RD-A-23, support from INBRE Program of the NCRR
(a division of NIH), support from CNCSIS grant RP-13, support from CNMP grant
11-56 /2007, support from Spanish Ministry of Science and Education (MEC) un-
der project TIN2006-15595, and support from the Comunidad de Madrid (grant No.
CCG07-UPM/TIC-0386 to the LIA research group).

Modeling Fas-Mediated Apoptosis In Latent HIV-1-Infected CD4+ T Cells 239

Bibliography

[1] Algeciras-Schimnich, A. et al.: CCR5 Mediates Fas- and Caspase 8 Dependent
Apoptosis of Both Uninfected and HIV Infected Primary HumanCD4 T cells.
AIDS. 16, 1467-1478 (2002)

[2] Alimonti, J. et al.: Mechanisms of CD4 T Lymphocyte cell death in human im-
munodeficiency virus infection and AIDS. J. Gen. Vir. 84, 1649-1661 (2003)

[3] Ashkenazi, A., Dixit, V.: Death receptors: signaling and modulation. Science. 281,
1305-1308 (1998)

[4] Bartz, S., Emerman, M.: Human immunodeficiency virus type 1 Tat induces apop-
tosis and increases sensitivity to apoptotic signals by up-regulating FLICE/Caspase
8. J. Vir. 73, 1956 1963 (1999)

[5] Biard-Piechaczyk M., et al.: Caspase-dependent apoptosis of cells expressing the
chemokine receptor CXCR4 is induced by cell membrane-associated human im-
munodeficiency virus type 1 envelope glycoprotein (gp120).Vir. 268, 329-344
(2000)

[6] Briggs, J. et. al.: The stoichiometry of Gag protein in HIV-1. Nature Struct. Mol.
Bio. 11, 672-675 (2004)

[7] Blankson, J. N. et al.: Biphasic decay of latently infected CD4+ T cells in acute
HIV-1 infection. J. Infect. Dis. 182, 16361642 (2000).

[8] Chan, D., Kim, P.: HIV entry and its inhibition. Cell. 93,681-684 (1998)
[9] Chun, T. W. et al.: In vivo fate of HIV-1-infected T cells:quantitative analysis of

the transition to stable latency. Nature Med. 1, 12841290 (1995)
[10] Chun, T. W. et al.: Quantification of latent tissue reservoirs and total body viral

load in HIV-1 infection. Nature. 387, 183188 (1997)
[11] Cicala C., et al.: HIV-1 envelope induces activation ofcaspase-3 and cleavage of

focal adhesion kinase in primary human CD4(+) T cells. Proc.Natl. Acad. Sci.
U.S.A. 97, 1178-1183 (2000)

[12] Conti, L. et al.: The HIV-1 vpr protein acts as a negativeregulator of apoptosis in
a human lymphoblastoid T cell line possible implications for the pathogenesis of
aids. J. Exp. Med. 187, 403-413 (1998)

[13] Crise, B, et al.: CD4 is retained in the ER by the human immunodeficiency virus
type 1 glycoprotein precursor. J. Vir. 64, 5585-5593 (1990)

[14] Farnet, C., Haseltine, W.: Determination of viral proteins present in the human im-
munodeficiency virus type 1 preintegration complex. J. Vir.65, 1910-1915 (1991)

[15] Finkel, T.: Apoptosis occurs predominantly in bystander cells and not in produc-
tively infected cells of HIV- and SIV-infected lymph nodes.Nature Med. 1, 129-
134 (1995)

[16] Finzi, D. et al.: Latent infection of CD4+ T cells provides a mechanism for lifelong
persistence of HIV-1, even in patients on effective combination therapy. Nature
Med. 5, 512517 (1999).

[17] Gillespie, D.T.: A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J. Comp. Phy. 22, 403-434 (1976)

240 Modeling Fas-Mediated Apoptosis In Latent HIV-1-Infected CD4+ T Cells

[18] Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The J.
Phy. Chem. 81, 2340-2361 (1977)

[19] Han, T., et al.: Experimental approaches to the study ofHIV-1 latency. Microbio.
5, 95-106 (2007)

[20] Hashimoto, F., et al.: Modulation of Bcl-2 Protein by CD4 Cross-Linking a pos-
sible mechanism for lympphocyte apoptosis in human immunodeficiency virus
infection. Blood. 90, 745-753 (1997)

[21] Hua, F., et al.: Effects of Bcl-2 levels on FAS signaling-induced caspase-3 acti-
vation: molecular genetic tests of computational model predictions. J. of Immun.,
175, 985-995 (2005) and correction 175, 6235-6237 (2005)

[22] Igney, F., Krammer, P.: Death and anti-death: tumour resistance to apoptosis. Na-
ture Rev. Can. 2, 277-288 (2002)

[23] Jack et al. Discrete nondeterministic modeling of the Fas pathway. IJFCS (14pp)
(2008) [accepted]

[24] Jacotet E., et al.: The HIV-1 viral protein R induces apoptosis via a direct effect
on the mitochondrial permeability transition pore. J. Exp.Med. 191, 33-45 (2000)

[25] Kim, S., et al.: Temporal aspects of DNA and RNA synthesis during human im-
munodeficiency virus infection: evidence for differentialgene expression. J. Vir.
63, 3708-3713 (1989)

[26] Kinoshita, S., et al.: The T cell activation factor NF-ATc positively regulates HIV-1
replication and gene expression in T cells. Immun. 6, 235-244 (1997)

[27] Lassen, K., et al.: Nuclear retention of multiply spliced HIV-1 RNA in resting
CD4+ T cells. PLoS Pathogens. 2, 650-661 (2006)

[28] Liu, X., et al.: DFF, a heterodimeric protein that functions downstream of Caspase-
3 to trigger DNA fragmentation during apoptosis. Cell. 89, 175-184 (1997)

[29] McCloskey, T., et al.: Dual role of HIV Tat in regulationof apoptosis in T cells. J.
Immun. 158, 1014-1019 (1997)

[30] Nabel, G., Baltimore, D.: An inducible transcription factor activates expression of
human immunodeficiency virus in T cells. Nature. 344, 711-713 (1987)

[31] Napolitano, G., et al.: CDK9 has the intrinsic propertyto shuttle between nucleus
and cytoplasm, and enhanced expression of CyclinT1 promotes its nuclear local-
ization. J Cell. Phys. 192, 209-215 (2002)

[32] Nie, Z. et al.: HIV-1 protease processes procaspase 8 tocause mitochondrial re-
lease of cytochrome c, caspase cleavage and nuclear fragmentation. Cell Death
Diff. 9, 1172-1184 (2002)

[33] Oyaizu, N., et al.: Cross-linking of CD4 molecules upregulates Fas antigen ex-
pression in lymphocytes by inducing interferon-gamma and tumor necrosis factor-
alpha secretion. Blood. 84, 2622-2631 (1994)

[34] Perelson, A.S. et al.: Decay characteristics of HIV-1-infected compartments during
combination therapy. Nature. 387, 188-191 (1997)

[35] Pierson, T. C. et al.: Molecular characterization of preintegration latency in HIV-1
infection. J. Virol. 76, 85188531 (2002)

[36] Rieux-Laucat, F., et al.: Autoimmune lymphoproliferative syndromes: genetic de-
fects of apoptosis pathways. Cell Death Diff. 10, 124-133 (2003)

Modeling Fas-Mediated Apoptosis In Latent HIV-1-Infected CD4+ T Cells 241

[37] Roland-Jones, S.L., Whittle, H.C.: Out of Africa: whatcan we learn from HIV-2
about protective immunity to HIV-1. Nature Imm. 9, 329-331 (2007)

[38] Ross, T. Using death to one’s advantage: HIV modulationand apoptosis. Leuk.
15, 332-341 (2001)

[39] Salghetti, S, et al.: Human immunodeficiency virus type1 Nef and p56Ick protein-
tyrosine kinase interact with a common element in CD4 cytoplasmic tail. Proc.
Natl. Acad. Sci. U.S.A. 92, 349-353 (1995)

[40] Scaffidi, C., et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17, 1675-
1687 (1998)

[41] Selliah, N., Finkel, T.: Biochemical mechanisms of HIVinduced T cell apoptosis.
Cell Death Diff. 8, 127-136 (2001)

[42] Siliciano, J. D. et al.: Long-term follow-up studies confirm the stability of the
latent reservoir for HIV-1 in resting CD4+ T cells. Nature Med. 9, 727728 (2003)

[43] Strack, et al.: Apoptosis mediated by HIV protease is preceded by cleavage of
Bcl-2. Proc. Natl. Acad. Sci., U.S.A. 93, 9571-9576 (1996)

[44] Strain, M. C. et al.: Heterogeneous clearance rates of long-lived lymphocytes in-
fected with HIV: intrinsic stability predicts lifelong persistence. Proc. Natl Acad.
Sci. U.S.A. 100, 48194824 (2003).

[45] Wildum, S. et al.: Contribution of Vpu, Env, and Nef to CD4 down-modulation
and resistance of human immunodeficiency virus type 1-infected T cells to super-
infection. J. Vir. 80, 8047-8059 (2006)

[46] Willey, R. et al.: Human immunodeficiency virus type 1 vpu protein induces rapid
degradation of CD4 J. Vir. 66, 7193-7200 (1992)

[47] World Health Organization 2007 AIDS Epidemic Update. http://www.who.
int/hiv/en/

[48] Wyatt, R., Sodroski, J.: The HIV-1 envelope glycoproteins: fusogens, antigens,
and immunogens. Science. 280, 5371 1884-1888 (1998)

[49] Yang, Y. et al.: HIV Tat binds Egr proteins and enhances Egr-dependent transacti-
vation of the Fas ligand promoter. J. Bio. Chem. 277, 19482-19487 (2002)

[50] Zack, J. A. et al.: HIV-1 entry into quiescent primary lymphocytes: molecular
analysis reveals a labile, latent viral structure. Cell. 61, 213222 (1990)

[51] Zack, J. A., et al.: Incompletely reverse-transcribedhuman immunodeficiency
virus type I genomes function as intermediates in the retroviral life cycle. J. Vir.
66, 17171725 (1992)

[52] Zauli, G., et al. Human immunodeficiency virus type 1 Nefprotein sensitizes
CD4+ T lymphoid cells to apoptosis via functional upregulation of the CD95/CD95
ligand pathway. Blood. 93, 1000-1010 (1999)

[53] Zhou, Y., et al.: Kinetics of human immunodeficiency virus type 1 decay following
entry into resting CD4+ T cells. J. Vir. 79, 21992210 (2005)

242 Modeling Fas-Mediated Apoptosis In Latent HIV-1-Infected CD4+ T Cells

label rule rate

r1 : FASL[FAS]s → [FASC]s k1f

r2 : [FASC]s → FASL[FASC]s k1r

r3 : FASC[FADD]c → FASC : FADD[]c k2f

r4 : FASC : FADD[]c → FASC[FADD]c k2r

r5 : FASC : FADD[FADD]c → FASC : FADD2[]c k2f

r6 : FASC : FADD2[]c → FASC : FADD[FADD]c k2r

r7 : FASC : FADD2[FADD]c → FASC : FADD3[]c k2f

r8 : FASC : FADD3[]c → FASC : FADD2[FADD]c k2r

r9 : FASC : FADD2 : CASP8[FADD]c → FASC : FADD3 : CASP8[]c k2f

r10 : FASC : FADD3 : CASP8[]c → FASC : FADD2 : CASP8[FADD]c k2r

r11 : FASC : FADD2 : FLIP [FADD]c → FASC : FADD3 : FLIP []c k2f

r12 : FASC : FADD3 : FLIP []c → FASC : FADD2 : FLIP [FADD]c k2r

r13 : FASC : FADD2 : CASP82[FADD]c → FASC : FADD3 : CASP82[]c k2f

r14 : FASC : FADD3 : CASP82[]c → FASC : FADD2 : CASP82[FADD]c k2r

r15 : FASC : FADD2 : CASP8 : FLIP [FADD]c → FASC : FADD3 : CASP8 : FLIP []c k2f

r16 : FASC : FADD3 : CASP8 : FLIP []c → FASC : FADD2 : CASP8 : FLIP [FADD]c k2r

r17 : FASC : FADD2 : FLIP2[FADD]c → FASC : FADD3 : FLIP2[]c k2f

r18 : FASC : FADD3 : FLIP2[]c → FASC : FADD2 : FLIP2[FADD]c k2r

r19 : FASC : FADD : CASP8[FADD]c → FASC : FADD2 : CASP8[]c k2f

r20 : FASC : FADD2 : CASP8[]c → FASC : FADD : CASP8[FADD]c k2r

r21 : FASC : FADD : FLIP [FADD]c → FASC : FADD2 : FLIP []c k2f

r22 : FASC : FADD2 : FLIP []c → FASC : FADD : FLIP [FADD]c k2r

r23 : FASC : FADD3[CASP8]c → FASC : FADD3 : CASP8[]c k2f

r24 : FASC : FADD3 : CASP8[]c → FASC : FADD3[CASP8]c k2r

r25 : FASC : FADD3[FLIP]c → FASC : FADD3 : FLIP []c k3f

r26 : FASC : FADD3 : FLIP []c → FASC : FADD3[FLIP]c k3r

r27 : FASC : FADD3 : CASP8[CASP8]c → FASC : FADD3 : CASP82[]c k3f

r28 : FASC : FADD3 : CASP82[]c → FASC : FADD3 : CASP8[CASP8]c k3r

r29 : FASC : FADD3 : CASP8[FLIP]c → FASC : FADD3 : CASP8 : FLIP []c k3f

r30 : FASC : FADD3 : CASP8 : FLIP []c → FASC : FADD3 : CASP8[FLIP]c k3r

r31 : FASC : FADD3 : FLIP [CASP8]c → FASC : FADD3 : CASP8 : FLIP []c k3f

r32 : FASC : FADD3 : CASP8 : FLIP []c → FASC : FADD3 : FLIP [CASP8]c k3r

r33 : FASC : FADD3 : FLIP [FLIP]c → FASC : FADD3 : FLIP2[]c k3f

r34 : FASC : FADD3 : FLIP2[]c → FASC : FADD3 : FLIP [FLIP]c k3r

r35 : FASC : FADD3 : CASP82[CASP8]c → FASC : FADD3 : CASP83[]c k3f

r36 : FASC : FADD3 : CASP83[]c → FASC : FADD3 : CASP82[CASP8]c k3r

r37 : FASC : FADD3 : CASP82[FLIP]c → FASC : FADD3 : CASP82 : FLIP []c k3f

r38 : FASC : FADD3 : CASP82 : FLIP []c → FASC : FADD3 : CASP82[FLIP]c k3r

r39 : FASC : FADD3 : CASP8 : FLIP [CASP8]c → FASC : FADD3 : CASP82 : FLIP []c k3f

r40 : FASC : FADD3 : CASP82 : FLIP []c → FASC : FADD3 : CASP8 : FLIP [CASP8]c k3r

r41 : FASC : FADD3 : CASP8 : FLIP [FLIP]c → FASC : FADD3 : CASP8 : FLIP2[]c k3f

r42 : FASC : FADD3 : CASP8 : FLIP2[]c → FASC : FADD3 : CASP8 : FLIP [FLIP]c k3r

r43 : FASC : FADD3 : FLIP2[CASP8]c → FASC : FADD3 : CASP8 : FLIP2[]c k3f

r44 : FASC : FADD3 : CASP8 : FLIP2[]c → FASC : FADD3 : FLIP2[CASP8]c k3r

Modeling Fas-Mediated Apoptosis In Latent HIV-1-Infected CD4+ T Cells 243

label rule rate

r45 : FASC : FADD3 : FLIP2[FLIP]c → FASC : FADD3 : FLIP3[]c k3f

r46 : FASC : FADD3 : FLIP3[]c → FASC : FADD3 : FLIP2[FLIP]c k3r

r47 : FASC : FADD2[CASP8]c → FASC : FADD2 : CASP8[]c k3f

r48 : FASC : FADD2 : CASP8[]c → FASC : FADD2[CASP8]c k3r

r49 : FASC : FADD2[FLIP]c → FASC : FADD2 : FLIP []c k3f

r50 : FASC : FADD2 : FLIP []c → FASC : FADD2[FLIP]c k3r

r51 : FASC : FADD2 : CASP8[CASP8]c → FASC : FADD2 : CASP82[]c k3f

r52 : FASC : FADD2 : CASP82[]c → FASC : FADD2 : CASP8[CASP8]c k3r

r53 : FASC : FADD2 : CASP8[FLIP]c → FASC : FADD2 : CASP8 : FLIP []c k3f

r54 : FASC : FADD2 : CASP8 : FLIP []c → FASC : FADD2 : CASP8[FLIP]c k3r

r55 : FASC : FADD2 : FLIP [CASP8]c → FASC : FADD2 : CASP8 : FLIP []c k3f

r56 : FASC : FADD2 : CASP8 : FLIP []c → FASC : FADD2 : FLIP [CASP8]c k3r

r57 : FASC : FADD2 : FLIP [FLIP]c → FASC : FADD2 : FLIP2[]c k3f

r58 : FASC : FADD2 : FLIP2[]c → FASC : FADD2 : FLIP [FLIP]c k3r

r59 : FASC : FADD[CASP8]c → FASC : FADD : CASP8[]c k3f

r60 : FASC : FADD : CASP8[]c → FASC : FADD[CASP8]c k3r

r61 : FASC : FADD[FLIP]c → FASC : FADD : FLIP []c k3f

r62 : FASC : FADD : FLIP []c → FASC : FADD[FLIP]c k3r

r63 : FASC : FADD2 : CASP82[]c → FASC : FADD2[CASP8P41
2]c k4

r64 : FASC : FADD3 : CASP83[]c → FASC : FADD3 : CASP8[CASP8P41
2]c k4

r65 : FASC : FADD3 : CASP82 : FLIP []c → FASC : FADD3 : FLIP [CASP8P41
2]c k4

r66 : FASC : FADD3 : CASP82[]c → FASC : FADD3[CASP8P41
2]c k4

r67 : [CASP8P41
2]c → [CASP8∗2]c k5

r68 : [CASP8∗2, CASP3]c → [CASP8∗2 : CASP3]c k6f

r69 : [CASP8∗2 : CASP3]c → [CASP8∗2, CASP3]c k6r

r70 : [CASP8∗2 : CASP3]c → [CASP8∗2, CASP3∗]c k7

r71 : [CASP3∗, XIAP]c → [CASP3∗ : XIAP]c k19f

r72 : [CASP3∗ : XIAP]c → [CASP3∗, XIAP]c k19r

r73 : [CASP8∗2, Bid]c → [CASP8∗2 : Bid]c k8f

r74 : [CASP8∗2 : Bid]c → [CASP8∗2, Bid]c k8r

r75 : [CASP8∗2 : Bid]c → [CASP8∗2, tBid]c k7

r76 : [tBid, Bax]c → [tBid : Bax]c k9f

r77 : [tBid : Bax]c → [tBid, Bax]c k9r

r78 : [tBid : Bax, Bax]c → [tBid : Bax2]c k9f

r79 : [tBid : Bax2]c → [tBid : Bax, Bax]c k9r

r80 : tBid : Bax2[Smac]m → tBid : Bax2, Smac∗[]m k10

r81 : tBid : Bax2[Cyto.c]m → tBid : Bax2, Cyto.c∗[]m k10

r82 : [Smac∗, XIAP]c → [Smac∗ : XIAP]c k11f

r83 : [Smac∗ : XIAP]c → [Smac∗, XIAP]c k11r

r84 : [Cyto.c∗, Apaf, ATP]c → [Cyto.c∗ : Apaf : ATP]c k12f

r85 : [Cyto.c∗ : Apaf : ATP]c → [Cyto.c∗, Apaf, ATP]c k12r

r86 : [Cyto.c∗ : Apaf : ATP, CASP9]c → [Cyto.c∗ : Apaf : ATP : CASP9]c k13f

r87 : [Cyto.c∗ : Apaf : ATP : CASP9]c → [Cyto.c∗ : Apaf : ATP, CASP9]c k13r

r88 : [Cyto.c∗ : Apaf : ATP : CASP9, CASP9]c → [Cyto.c∗ : Apaf : ATP : CASP92]c k14f

244 Modeling Fas-Mediated Apoptosis In Latent HIV-1-Infected CD4+ T Cells

label rule rate

r89 : [Cyto.c∗ : Apaf : ATP : CASP92]c → [Cyto.c∗ : Apaf : ATP : CASP9, CASP9]c k14r

r90 : [Cyto.c∗ : Apaf : ATP : CASP92]c → [Cyto.c∗ : Apaf : ATP : CASP9, CASP9∗]c k15

r91 : [CASP9∗, CASP3]c → [CASP9∗ : CASP3]c k16f

r92 : [CASP9∗ : CASP3]c → [CASP9∗, CASP3]c k16r

r93 : [CASP9∗ : CASP3]c → [CASP9∗, CASP3∗]c k17

r92 : [CASP9, XIAP]c → [CASP9 : XIAP]c k18f

r93 : [CASP9 : XIAP]c → [CASP9, XIAP]c k18r

r96 : Bax[Bcl2]m → [Bcl2 : Bax]m k20f

r97 : [Bcl2 : Bax]m → Bax[Bcl2]m k20r

r98 : tBid[Bcl2]m → [Bcl2 : tBid]m k20f

r99 : [Bcl2 : tBid]m → tBid[Bcl2]m k20r

r100 : [HIVRNA, RT]c → [HIVcDNA, RT]m k21

r101 : HIVcDNA[]n → [HIVcDNA]n k22

r102 : [HIVcDNA]n → [HIVLTR]n k22

r103 : NFAT []n → [NFAT]n k23

r104 : CDK9[]n → [CDK9]n k24

r105 : [CyclinT 1, CDK9]n → [PTEFb]n k25

r106 : [NFAT, HIVLTR]n → [HIVLTR : NFAT]n k26

r107 : [HIVLTR : NFAT, Tat]n → [HIVLTR : NFAT : Tat]n k27

r108 : [HIVLTR : NFAT : Tat, PTEFb]n → [HIVLTR : NFAT : Tat : PTEFb]n k28

r109 : [HIVLTR]n → [HIVLTR, mRNATat]n k29

r110 : [HIVLTR]n → [HIVLTR, mRNAV pr]n k29

r111 : [HIVLTR]n → [HIVLTR, mRNAHIVpr
]n k29

r112 : [HIVLTR]n → [HIVLTR, mRNANef]n k29

r113 : [HIVLTR : NFAT]n → [HIVLTR : NFAT, mRNATat]n k30

r114 : [HIVLTR : NFAT]n → [HIVLTR : NFAT, mRNAV pr]n k30

r115 : [HIVLTR : NFAT]n → [HIVLTR : NFAT, mRNAHIVpr
]n k30

r116 : [HIVLTR : NFAT]n → [HIVLTR : NFAT, mRNANef]n k30

r117 : [HIVLTR : NFAT : Tat]n → [HIVLTR : NFAT : Tat, mRNATat]n k31

r118 : [HIVLTR : NFAT : Tat]n → [HIVLTR : NFAT : Tat, mRNAV pr]n k31

r119 : [HIVLTR : NFAT : Tat]n → [HIVLTR : NFAT : Tat, mRNAHIVpr
]n k31

r120 : [HIVLTR : NFAT : Tat]n → [HIVLTR : NFAT : Tat, mRNANef]n k31

r121 : [HIVLTR : NFAT : Tat : PTEFb]n → [HIVLTR : NFAT : Tat : PTEFb, mRNATat]n k32

r122 : [HIVLTR : NFAT : Tat : PTEFb]n → [HIVLTR : NFAT : Tat : PTEFb, mRNAV pr]n k32

r123 : [HIVLTR : NFAT : Tat : PTEFb]n → [HIVLTR : NFAT : Tat : PTEFb, mRNAHIVpr
]n k32

r124 : [HIVLTR : NFAT : Tat : PTEFb]n → [HIVLTR : NFAT : Tat : PTEFb, mRNANef]n k32

r125 : [mRNATat]n → mRNATat[]n k33

r126 : [mRNANef]n → mRNANef []n k33

r127 : [mRNAV pr]n → mRNAV pr[]n k33

r128 : [mRNAHIVpr
]n → mRNAHIVpr

[]n k33

r129 : [mRNATat]c → [mRNATat, T at]n k34

r130 : [mRNANef]c → [mRNANef , Nef]n k34

r131 : [mRNAV pr]c → [mRNAV pr, V pr]n k34

r132 : [mRNAHIVpr
]c → [mRNAHIVpr

, HIVpr]n k34

r133 : [mRNATat]c → []c k35

Modeling Fas-Mediated Apoptosis In Latent HIV-1-Infected CD4+ T Cells 245

label rule rate

r134 : [mRNANef]c → []c k35

r135 : [mRNAV pr]c → []c k35

r136 : [mRNAHIVpr
]c → []c k35

r137 : Tat[]n → [Tat]n k36f

r138 : [Tat]n → [Tat]nCasp8 k37

r139 : [Tat]n → [Tat]nBcl2 k38

r140 : [Tat]n → FASL[Tat]n k39

r141 : [Tat, Bcl2]c → [Tat]c k40

r142 : V pr[]m → V pr[Bcl2]m k41

r143 : [V pr, Bax]c → [V pr]c k42

r144 : [V pr, Bcl2]m → [V pr : Bcl2]m k43

r145 : [V pr : Bcl2]m → [V pr, Bcl2]m k44

r146 : [V pr, PTPC]m → [V pr : PTPC]m k45

r147 : [V pr : PTPC, Cyto.c]m → Cyto.c∗[V pr : PTPC]m k46

r148 : [HIV Protease, Casp8]c → [HIV Protease, Casp8∗]m k47

r149 : HIV Protease[Bcl2]m → HIV Protease[]m k48

r150 : [Nef]n → [Nef, FAS]m k49

r151 : [Nef]n → [Nef, FASL]m k50

r152 : [FASL]s → FASL[]s k51

r153 : [Tat]n → Tat[]n k36r

246 Modeling Fas-Mediated Apoptosis In Latent HIV-1-Infected CD4+ T Cells

The following tables give the deterministic kinetic rates (reaction rates) used in the
description of the reactions;

k1f = 9.09E − 05nM−1s−1 k11r = 2.21E − 03 s−1

k1r = 1.00E − 04s−1 k12f = 2.78E − 07nM−1s−1nM−1

k2f = 5.00E − 04nM−1s−1 k12r = 5.70E − 03 s−1

k2r = 0.2s−1 k13f = 2.84E − 04nM−1s−1

k3f = 3.50E − 03nM−1s−1 k13r = 0.07493s−1

k3r = 0.018s−1 k14f = 4.41E − 04nM−1s−1

k4 = 0.3s−1 k14r = 0.1s−1

k5 = 0.1s−1 k15 = 0.7s−1

k6f = 1.00E − 05nM−1s−1 k16f = 1.96E − 05nM−1s−1

k6r = 0.06s−1 k16r = 0.05707s−1

k7 = 0.1s−1 k17 = 4.8s−1

k8f = 5.00E − 03nM−1s−1 k18f = 1.06E − 04nM−1s−1

k8r = 0.005 s−1 k18r = 1.00E − 03s−1

k9f = 2.00E − 04nM−1s−1 k19f = 2.47E − 03nM−1s−1

k9r = 0.02s−1 k19r = 2.40E − 03s−1

k10 = 1.00E − 03nM−1s−1 k20f = 2.00E − 03nM−1s−1

k11f = 7.00E − 03nM−1s−1 k20r = 0.02s−1

k21 = 0.0334563416666667nM−1s−1 k36r = 0.0019s−1

k22 = 0.000555555555555556s−1 k37 = 4.0E − 006s−1

k23 = 100s−1 k38 = 2.0E − 006s−1

k24 = 400s−1 k39 = 2.0E − 007s−1

k25 = 0.4nM−1s−1 k40 = 2.0E − 008nM−1s−1

k26 = 5.0E − 005nM−1s−1 k41 = 1.1E − 006s−1

k27 = 0.1nM−1s−1 k42 = 2.0E − 008nM−1s−1

k28 = 200nM−1s−1 k43 = 2.0E − 008nM−1s−1

k29 = 2.8E − 004s−1 k44 = 2.0E − 006s−1

k30 = 2.8E − 003s−1 k45 = 2.0E − 006s−1

k31 = 0.071s−1 k46 = 1.0E − 005nM−1s−1

k32 = 0.71s−1 k47 = 6.0E − 012nM−1s−1

k33 = 0.2s−1 k48 = 3.0E − 008nM−1s−1

k34 = 0.04s−1 k49 = 3.0E − 009s−1

k35 = 0.033s−1 k50 = 1.0E − 007s−1

k36f = 0.002s−1 k51 = 2.0E − 006s−1

Transforming state-based models to P Systems
models in practice

———————————————
Petros Kefalas1, Ioanna Stamatopoulou2, George Eleftherakis1,
Marian Gheorghe3

1CITY College, Department of Computer Science,
13 Tsimiski Str., 54624, Thessaloniki, Greece
{kefalas, eleftherakis }@city.academic.gr

2South-East European Research Centre,
17 Mitropoleos Str., 54624, Thessaloniki, Greece
istamatopoulou@seerc.org

3University of Sheffield, Department of Computer Science,
211 Portobello Str, S14DP, UK
M.Gheorghe@dcs.shef.ac.uk

We present an automatic practical transformation of Communicating X-
machines to Population P Systems. The resulting compiler isable to take as
input a Communicating X-machine model written in an appropriately designed
language (XMDL) and produce a Population P System in anothernotation
(PPSDL). The latter contains only transformation and communication rules.
However, the user can further enhance the models with more rules that deal
with the reconfiguration of structure of the network of cells. XMDL, PPSDL
and their accompanied compilers and animators are briefly presented. The prin-
ciples of transformations and the transformation templates of the compiler are
discussed. We use an example model of a biological system, namely an ant
colony, to demonstrate the usefulness of this approach.

1 Introduction

State-based methods, such as finite state machines and theircounterparts, are widely
used for modelling reactive systems [7]. In particular, X-machines (XMs) possess an
intuitive modelling style since they reduce the number of the model’s states due to their
associated memory structure and they are directly linked toimplementation due to tran-
sition functions between states. Most importantly, however, X-machines are coupled
with techniques for formal verification and testing, reassuring correctness of imple-
mentation with respect to their models [4, 2]. There exist several tools that facilitate
modelling with X-machines as well as the testing and verification of models [5, 16].
In addition, X-machine models can communicate, thus forming larger scale systems.

248 Transforming state-based models to P Systems models in practice

Communicating X-machines (CXMs) provide the necessary modelling message pass-
ing means and computation that demonstrate the feasibilityof scaling up models [8].
However, they do suffer from a major drawback: the organisational structure of the com-
posed system is predefined and remains static throughout thecomputation. Although for
some systems this is a virtue, for some others, such as multi-agent systems, reorgani-
sation is an important feature that should be addressed in a model. In this context, by
reorganisation we mean change in the network of communication between agents and
change in the number of agents that participate in the system.

Membrane computing, on the other hand, is a relatively new area and its usefulness
regarding the modelling of systems has only recently started to be explored. P Sys-
tems, however, possess such features that may potentially address the problems stated
above [11]. Some initial studies demonstrated that P Systems and its variants, such as
Population P Systems (PPSs), could be used to model multi-agent systems [12]. They
may not seem as intuitive with respect to modelling behaviours of agents because simple
objects and rewriting rules over those objects are not sufficient. But they do deal with
reorganisation quite effectively. Rules for division and differentiation of cells as well
as cell death and bond-making rules allow for a powerful manipulation of the structure
of a multi-agent system and the communication links betweenagents-cells. Tools have
been developed, although not targeted to multi-agent systems [15]. The majority of the
tools focus on computation with the rest dealing with some modelling aspects.

A brief comparison between Communicating X-machines and Population P Systems is
shown in Table 1.1. Their complementarity has led to the successful integration of the
two methods [14].

Modelling feature
¯

CXMs
¯

PPSs
¯

Agent internal state representation
√

Complex data structures for knowledge, messages, stimuli etc.
√

Direct communication / Message exchange
√

Non-deterministic communication
√

Dynamic addition and removal of agent instances
√

Dynamic communications network restructuring
√

Synchronous computation
√ √

Asynchronous computation
√ √

Formal verification of individual components
√

Test cases generation for individual components
√

Tool support
√ √

Table 1.1 Comparison of features of X-machines and Population P Systems with respect to mod-
elling.

Transforming state-based models to P Systems models in practice 249

In this paper, we take a different approach. We attempt to transform existing Com-
municating X-machine models to Population P Systems models. The transformation is
based on the theoretical principles reported in [10]. Here,we deal with the transforma-
tion in practice, that is, having a CXM model described in some language for CXMs,
we describe the automatic compilation to an equivalent PPS model described in some
other language for PPSs. These languages, namely XMDL and PPSDL (DL stands for
Description Language) have been developed separately in time, with about a 6-year dif-
ference. However, the younger language PPSDL has been influenced by the successful
launch and experience we acquired through the use of XMDL. This admittedly eased
the implementation of the compiler that does the transformation to some extent.

The rationale behind the transformation is rather simple but we believe an important
one. As modellers, we would rarely use PPS for modelling the behaviour and com-
munication between agents. The main reason for that would bethe lack of expressive
power, as X-machines serve this need in a far better way. So, taking CXM models, which
can be individually verified, and transforming them into PPSmodels we could use PPS
rules to extend the model with dynamic features. Practically, this means that not only
we surpass the shortcomings of PPS in modelling agent behaviours, but we also feel
quite confident (depending on a formal proof that the transformation is correct) that the
resulting PPS model meets at least some quality requirements.

The paper is organised as follows. Section 2 is a brief introduction to Communicating
X-machines with main focus on XMDL. Section 3 does a similar but slightly more
extended introduction to PPSDL. The principles of transformation are briefly listed in
Section 4 together with the actual transformation templates from XMDL to PPSDL.
We use a simple example, a system of communicating ants, as part of an ant colony, to
show the equivalence between the input XMDL and the output PPSDL models. Finally,
we discuss certain arising issues and we conclude with directions for future work and
extensions.

2 X-Machine Description Language

X-machines are finite state machines with two prominent characteristics; they have an
associated memory structure,m, that can hold data and instead of having simple inputs
as labels, transitions are triggered through functions,ϕ, which are activated by inputs,
σ, and memory values and produce outputs,γ, while updating the memory values. Of
particular interest are stream X-machines which have been extensively used for mod-
elling reactive systems. The formal definition of stream XMscan be found in [4]. An
informal but comprehensive abstract model of an XM is depicted in Fig. 2.1.

XM models can communicate by sending messages one to another. There are many
alternative definitions of Communicating X-machines. We use a practical approach in
which the output of a function of one XM is forwarded as input to a function of another
XM [8]. However, in order for this to happen, a requirement should be met: the message

250 Transforming state-based models to P Systems models in practice

Fig. 2.1 An abstract X-machine.

Fig. 2.2 An abstract example of two Communicating X-machines.

sent should be compliant with the input alphabet of the receiving XM. This is why a
transformation function,T , is required to transform the message of the sender into an
input for the receiver. The concept is shown in Fig. 2.2 whilea complete definition of
CXMs can be found in [8].

The X-Machine Description Language (XMDL) was developed toassist with the mod-
elling and animation of models [5]. The idea behind XMDL was to use a simple, yet
powerful, declarative notation which would be close to the mathematical, yet practi-
cal, notation for XMs. XMDL possesses constructs with whichone can define an input
and an output alphabet set, a memory structure including an initial memory, a set of
states including an initial state, transitions between states and functions. Functions get
an input and a memory and give an output and a new memory, if certain conditions
(guards) hold on input or memory values. The modeller can define any kind of different
types of values by combining built-in types, such as naturalnumbers, with user-defined
types, such as sets, sequences, tuples, etc. Table 2.2 informally presents XMDL con-
structs with a brief explanation on each one. The complete formal XMDL grammar is
available from [6].

XMDL has been extended to provide the ability to define the transformation function
T , i.e. the function that transforms the output of a CXM to an input of another CXM
in a communicating system. XMDL-c also provides the constructs to define instances
of class XMs with different initial state and memory as well as communication links
between functions of participating CXMs (see Table 2.3).

Transforming state-based models to P Systems models in practice 251

XM
¯

XMDL syntax
¯

Informal semantics
¯

Σ #input (i1, . . . , in) Defines the input tuple for functions

Γ #output (o1, . . . , ok) Defines the output tuple for functions

Q #states = { q1, . . . , qm } Defines the set of states of the XM

M #memory (m1, . . . , mj) Defines the memory tuple of the XM

q0 #init state (s0) Defines the initial state

m0 #init memory (v1, . . . , vj) Defines the initial memory values

F #transition (qi, ϕk) = qj

A set of statements that define the transition
between states and their corresponding la-
bels (functions)

Φ

#fun name

(input tuple, memory tuple) =

if condition1 (and|or)

condition2 . . .

then (output tuple,memory tuple)

where informative expression.

Defines a functionϕ in Φ

#type identifier =

user defined | set operations |

built- in type | tuple

Defines types of values to be used in all con-
structs. User defined types include enumer-
ated sets, sequences, etc., while operation
include unions, Cartesian products (tuples)
etc.

Table 2.2 Main constructs of XMDL (words in upright font are XMDL keywords)

XMDL-c syntax
¯

Informal semantics
¯

#model instance name

instance of modelname with:

#init state = initial state;

#init memory = initial memory tuple

Defines an instance of a CXM component
with an initial state and initial memory.

#communication of receiver

function reads from sender.
Defines that a function of a receiver XM
reads an input from another XM.

#communication of sender

function writes message to receiver.

using variables in message

from (memory|input|output) tuple

Defines T, i.e. the message format, the func-
tion of the sender XM and the receiver.

Table 2.3 Main constructs of XMDL-c (words in upright font are XMDL keywords).

A tool, called X-System, has also been implemented [9]. It includes a DCG (Definite
Clause Grammar) parser, a syntax and logical error checker,a compiler of XMDL to
Prolog and an animator. Models written in XMDL are compiled and animated, that is,
the synchronous computation of the CXM model is imitated through inputs provided by
the user. Part of X-System’s architecture is shown in Fig. 2.3.

252 Transforming state-based models to P Systems models in practice

Fig. 2.3 The X-System

3 Population P Systems Description Language

Population P Systems consist of network of cells which are instances of possibly dif-
ferent types. Each type is a class of cells possessing the same rules. Rules consume
objects and generate new ones (transformation), in the presence of some objects they
change the type of the cell (differentiation), divide the cell (division) or dissolve the cell
(death). Communication rules, import or export objects from and to the environments
or other neighbouring cells. The latter are determined through bond-making rules that
create links between cells if certain conditions hold. The formal definition of PPS can
be found in [1]. An abstract PPS model is shown in Fig. 3.4.

Fig. 3.4 An abstract Population P System.

Similarly to XMDL, Population P Systems Description Language (PPSDL) has been
designed so as to allow the experimentation with some PPS models [13]. We decided
to keep the concept and, occasionally, the look of XMDL to some extent, and came up
with a simple declarative notation, as close as possible to the formal definition of a PPS.
PPSDL possesses constructs that allow one to define types of cells, cells as instances of
those types, objects in cells and in the environment, as wellas all types of rules. What
makes PPSDL practical for modelling is the ability to associate objects with types, by
combining built-in types with user-defined types. Therefore, objects in cells are charac-
terised by a type identifier; we use the notationtype identifier * (value) to denote
objects. Table 3.5 informally presents PPSDL constructs with a brief explanation on
each one. PPSDL is the core of PPS-System, which includes a DCG parser, a compiler
of PPSDL to Prolog and an animator, similar to X-System in Fig. 2.3. The animator

Transforming state-based models to P Systems models in practice 253

simulates the computation of a PPS model, also allowing the setting of different prior-
ities in rule selection. Briefly, at each cycle, all cells areconsidered and the applicable
rules for each are found and triggered (ordered according totheir priority). PPS-System
allows the user to input objects directly to cells during computation, if needed, thus
allowing more flexibility in the animation.

Cells and types CXM component A cell with objects, transformation
and communication rules

Objects in Cells

StatesQ
MemoryM
InputsΣ
OutputsΓ
Messages

(state : q), whereq ∈ Q
(memory : m), wherem ∈ M
(input : i), wherei ∈ Σ

(output : o), whereo ∈ Γ

(message : content)

Transformation
Rules

ϕ : Σ ×M → Γ ×M
such thatϕ(σ, m) = (γ, m′),
wherem, m′ ∈ M, σ ∈ Σ , γ ∈
Γ ,
for everyq, q′ ∈ Q
such thatq′ ∈ F (ϕ, q)

ϕσ,m : ((state : q)

(memory : m))

(input : σ)

→ (state : q′)

(memory : m′)

(output : γ))t

Communication
Rules

Most general case (incoming
and outgoing message)
ϕ : Σ ×M → Γ ×M
such thatϕ(σ, m) = (γ, m′),
wherem, m′ ∈ M, σ ∈ Σ , γ ∈
Γ ,
for everyq, q′ ∈ Q
such thatq′ ∈ F (ϕ, q)
and forincoming ∈ Σ ,
T (σ, m, γ) = outgoing

ϕσ,m : ((state : q)

(memory : m)

(message : incoming)

→ (state : q′)

(memory : m′)

(output : γ)

(message : outgoing))t

Table 3.4 Principles of transforming a CXM to a PPS.

4 Transforming XMDL to PPSDL

Recently, some basic principles for transforming CXM to PPShave been reported [10]
and are briefly presented in Table 3.4. Based on those principles a compiler, which
accepts XMDL models and a CXM system formed out of these models and produces
PPSDL code for the equivalent PPS, has been developed.

The compiler is written in Prolog (as X-System and PPS-System), based on a set of
templates that implement the theoretical transformations. For example, the template
compiling the cell types in PPSDL is:

if Types = { T | xmdl_c_code=[#model _ instance_of T|_] }
then ppsdl_code = [#cell_types = Types]

254 Transforming state-based models to P Systems models in practice

and the template for compiling a function (with no communication annotation) to a
transformation rule in PPSDL is:

if xmdl_code = [#model M] and
xmdl_code = [#fun F (I, IM) = If (O, OM) Where] and
xmdl_code = [#transition (S1, F) = S2] then
ppsdl_code = [#transformation_rule F

([state * (S1), memory * (IM), input * (I)]
-> [state * (S2), memory * (OM), output * (O)]) : M, If, Where]

Sub-statementsIf andWhere are left untouched, since XMDL and PPSDL share the
same syntax for these expressions. As an example, consider an on-off switch which
counts how many times its status change. Part of the XMDL codeis:

#model switch.
#transition (on, switch_off) = off.
#fun switch_off ((turn_off),(?count)) = ((device_off),(?newcount)),

where ?newCount <- ?count+1.

The resulting PPSDL code according to the template above would be:

#transformation_rule switch_off
([state * (on), memory * ((?count)), input * (turn_off)] ->

[state * (off), memory * ((?newcount)), output * (device_off)]):
switch,

where ?newCount <- ?count+1.

In the case that the CXM function is one that sends a message toanother function, a similar trans-
formation rule is produced which also generates an object ofthe formoutgoing message *
(Message) in the right hand multiset. An additional communication rule is also created in order
to transport this message to the appropriate cell in the formof an incoming message * (Mes
sage) . Finally, for a CXM function that reads a message, the objectinput * (Input) is re-
placed by an object of the formincoming message * (Message) in the left hand side of the
corresponding rule.

5 Example transformation: Ants

Consider the case of a Pharaoh ant colony and its behaviour inside the nest (described in more
detail in [3]). The ants spend much of their in-nest time doing nothing. Ants doing nothing can
be referred to as inactive and can become active, i.e. start searching for food, in the case that its
food supplies drop below a particular threshold.

The Pharaoh ants behaviour is presented in a very simplified situation where the colony is situated
in an rectangular environment. The ants are either inactiveor move around looking for food. When
two ants come across they might share food if one is active andthe other one is not (in an inactive
state). The ants go out to forage when they are hungry, no source food is identified (i.e. no other
ant that might provide some food) and a trail pheromone leading to an exit point from the hive is
discovered.

Transforming state-based models to P Systems models in practice 255

The XM model of an ant is depicted in Fig. 5.5 where the• symbol on a function denotes that the
function receives input from another machine and, on the contrary, the� symbol on a function
denotes that the function sends a message to be received as input by the function of another
machine. This means that communication between two ants is required when they share food
using thegiveFood , andtakeEnoughFood or takeNotEnoughFood functions.

Fig. 5.5 The Pharaoh ant X-machine model.

5.1 Ants in XMDL For demonstration purposes, we consider a colony consisting of two ants
(ant1 andant2) which form a CXM system and need to communicate in order to share food if
one of them is inactive and the other is not. Part of the XMDL code modelling a communicating
ant is as follows (identifiers preceded with a? denote variables):

#model Ant.

#type coord = natural0.
#type pos = (coord, coord).
#type fPortion = natural.
#type description = {sp, ph, ha, nha}.
#type stimuli = description union fPortion.
#type food = natural0.
#type fThreshold = natural.
#type fDecayRate = natural.
#type outstring = {ignoring_ant, ignoring_hungry_ant, .. .,

giving_food}.

#input (pos, stimuli).
#output (outstring).
#memory (pos, food, fThreshold, fDecayRate, fPortion).
#states = {inactive, hungry, giving, taking, dead}.

#transition (inactive, doNothing) = inactive.
#transition (inactive, noFoodToGive) = inactive.
#transition (inactive, becomeHungry) = hungry.
...
#fun die ((?p, ?in), (?pos, ?f, ?ft, ?fdr, ?mfp)) =

if ?what_is_left =< 0 then

256 Transforming state-based models to P Systems models in practice

((dying), (?pos, 0, ?ft, ?fdr, ?mfp))
where ?what_is_left <- ?f - ?fdr.

#fun giveFood ((?p, ?in), (?pos, ?f, ?ft, ?fdr, ?mfp)) =
((giving_food), (?pos, ?nf, ?ft, ?fdr, ?mfp))
where ?food_reduction <- ?fdr + ?mfp
and ?nf <- ?f - ?food_reduction.

...

#model ant1 instance_of Ant
with: #init_state {inactive}; #init_memory ((1,1), 150, 5 0, 5,

15).

#communication of function takeEnoughFood:
#reads from ant2.

#communication of function takeNotEnoughFood:
#reads from ant2.

#communication of function giveFood:
#writes (?pos, ?mfp) to (ant2)
using ?pos from memory (?pos, ?f, ?ft, ?fdr, ?mfp)
and using ?mfp from memory (?pos, ?f, ?ft, ?fdr, ?mfp).

5.2 Ants in PPSDL Running the compiler, we produce the following PPSDL code
for the ant system (part only):

#define coord = natural0.
...
#define oustring = {ignoring_ant,ignoring_hungry_ant, . ..,

giving_food}.
#define ant_state = {inactive, hungry, giving, taking, dea d}.

#object ant_state_object = state * (ant_state).
#object ant_memory_object =

memory* (pos, food, fthreshold, fdecayrate, fportion).
#object ant_input_object = input * (pos, stimuli).
#object ant_output_object = output * (outstring).

#cell_types = {ant}.
#cell_names = {ant1, ant2}.

#cell ant1 : ([state * (inactive), memory * ((1, 1), 150, 50, 5,
15)], ant).

#cell ant2 : ([state * (inactive), memory * ((1, 1), 150, 50, 5,
15)], ant).

#transformation_rule givefood ([state * (giving),
memory* (?pos,?f,?ft,?fdr,?mfp), input * (?p,?in)] -> [state *

(inactive),
memory* (?pos,?nf,?ft,?fdr,?mfp), output * (giving_food),

Transforming state-based models to P Systems models in practice 257

outgoing_message * (?pos, ?mfp)]) : ant,
where ?food_reduction <- ?fdr + ?mfp and ?nf <- ?f - ?

food_reduction.
...

In addition to the above, a communication rule is required tosend the message produced
by a cell (outgoing message * (M)) to another cell:

#communication_exit_rule export_message
(when [outgoing_message * (M)] send_to_cell [incoming_message

* (M)]):ant.

Note that this communication rule also transforms the message object to be exported
into incoming message * (M) so that it may be used as input by the receiving cell.

We also add a default bond-making rule of the form:

#bond_making_rule export_message
(when [] : ant and [] :ant).

which always creates a communication link between the ants.

The following is an output of the PPS-System animation of theant colony:

----------- CYCLE: 1 --------------------------------- --
CELL: ant1 OBJECTS: [[state, inactive],

[memory, [[1, 1], 150, 50, 5, 15]]] TYPE: ant
CELL: ant2 OBJECTS: [[state, hungry],

[memory, [[1, 1], 40, 50, 5, 15]]] TYPE: ant
GRAPH = [(ant1, ant2), (ant2, ant1)]
...
>>> Begin of User Input for all Cells. Provide input...
>>> For cell ant1: [[1,1],ha].
>>> End of User Input for all Cells
...
----------- CYCLE: 2 --------------------------------- --
CELL: ant2 OBJECTS: [[state, hungry], [memory,...] TYPE: a nt
CELL: ant1 OBJECTS: [[state, inactive], [memory,...],

[input, [[1, 1], ha]]] TYPE: ant
...
*** Begin Computation cycle for all Cells
*** Computation Cycle for Cell: ant2
*** Computation Cycle for Cell: ant1
----[transformation_rule(meethungryant, ant1, ...]

Trying to apply Rule : meethungryant
ant1: buffer-[[state, giving], [memory,...],

[output, met_hungry_ant]]
*** End of Computation cycle for all Cells
*** Finished with updating Cell Objects with Buffers

258 Transforming state-based models to P Systems models in practice

...
>>> For cell ant2: [[1,1],nha].
----------- CYCLE: 3 --------------------------------- --
CELL: ant1 OBJECTS: [[state, giving], [memory,...],

[output, met_hungry_ant]] TYPE: ant
CELL: ant2 OBJECTS: [[state, hungry], [memory,...],

[input, [[1, 1], nha]]] TYPE: ant

*** Computation Cycle for Cell: ant2
----[transformation_rule(meetnonhungryant, ant2, ...]

Trying to apply Rule : meetnonhungryant
ant2: buffer-[[state, taking], [memory,...],

[output, found_non_hungry_ant]]
...
>>> For cell ant1: [[1,1],ha].
----------- CYCLE: 4 --------------------------------- --
CELL: ant2 OBJECTS: [[state, taking], [memory,...], ...] T YPE:

ant
CELL: ant1 OBJECTS: [[state, giving], [memory,...],

[input, [[1, 1], ha]]] TYPE: ant

*** Computation Cycle for Cell: ant1
----[transformation_rule(givefood, ant1, [[state, givi ng], ...]

Trying to apply Rule : givefood
ant1: buffer-[[message, [[1, 1], 15]], [state, inactive],

[memory,...],...]
----------- CYCLE: 5 --------------------------------- --
CELL: ant2 OBJECTS: [[state, taking], [memory,...], ...] T YPE:

ant
CELL: ant1 OBJECTS: [[message, [[1, 1], 15]], [state, inact ive],

[memory, ...], ...] TYPE: ant
...
*** Computation Cycle for Cell: ant1
----[communication_exit_rule(export_message, ant1, .. .]

Trying to apply Rule : export_message
ant2: buffer-[[incoming_message, [[1, 1], 15]]]

...
----------- CYCLE: 6 --------------------------------- --
CELL: ant2 OBJECTS: [[state, taking], [incoming_message, [[1, 1],

15]],
[memory,...],...] TYPE: ant

CELL: ant1 OBJECTS: [[state, inactive], [memory,...], ...] TYPE:
ant

...
*** Computation Cycle for Cell: ant2
----[transformation_rule(takenotenoughfood, ant2, ...]

Trying to apply Rule : takenotenoughfood
ant2: buffer-[[state, hungry], [memory, [[1, 1], 45, 50, 5,

15]],...]
...

The complete specifications of the ants model in XMDL and in PPSDL (as a result

Transforming state-based models to P Systems models in practice 259

of the transformation process), both languages’ manuals aswell as the output of the
model’s animation can be found in [17].

6 Discussion

So far, we presented a transformation of a (static) CXM modelto a (static) PPS model.
One could enhance the PPS model with features that deal with apotential dynamic
structure of the system. For instance:

• if an ant starves to death, it should be removed from the PPS model;
• if another ant becomes part of the system, a new cell should begenerated;
• a bond between two cells should be generated only if two ants move to the same

position;
• a bond between two cells should cease to exist if two ants are not at the same

position.

All the above issues can be dealt with by additional rules of aPPS, such as cell division,
cell death, bond-making rules etc. For the first example, a cell death rule such as:

#cell_death_rule dr ([memory * (?pos, 0, ?ft, ?fdr, ?mfp)]) :
ant -> +.

will do (the ant dies when it has no more food reserves, as indicated by the second
memory element). Similarly, a bond-making rule such as:

#bond_making_rule neighbours
(when [memory * (?pos, ?f1, ?ft1, ?fdr1, ?mfp1)] : ant

and [memory * (?pos, ?f2, ?ft2, ?fdr2, ?mfp2)] : ant).

will produce a bond between two ants in the same position.

Up to date, the transformation of XMDL into PPSDL is almost fully automatic. The
only feature that is dealt with manually at the moment is the transformation functionT ,
that is, how the output message of one cell can have the required input format of another
cell. For the time being, the compiler provides a template for the message (a tuple of
undefined terms) allowing the user to fill in the correct variable names that correspond
to the actual content of this message. The reason for this is that there is no obvious way
to link XMDL-c source code with the XMDL code of a model and match the variables
of the two codes. It is thought that an external function (explicit Prolog code that does
the message formation) may solve the problem.

Another improvement that should be made is in the definitionsof objects. XMDL code
that defines different models might have the same identifiersreferring to different types

260 Transforming state-based models to P Systems models in practice

(e.g. enumerated sets). When these are compiled to PPSDL code, they result in conflict-
ing definitions of the same object. On the contrary, it would be desirable that PPSDL
allows encapsulation, that is, facilitates the definition of objects that belong to different
types of cells, even with the same identifier. This is left to be designed and implemented
in PPSDL in the near future, together with other improvements suggested by the com-
munity of researchers who might want to use PPSDL and PPS-System.

7 Conclusions

We presented an automatic transformation from XMDL, a language used to model Com-
municating X-machines, into PPSDL, a language used to modelPopulation P Systems.
The implemented compiler is based on principles of transformation reported in previ-
ous work. The benefit we gain from such a transformation is that we take advantage of
existing CXM models that have been verified in order to enhance them with features
that refer to the dynamic reconfiguration of their structure. Once the CXM model is
compiled into a PPS model, one can add more PPS rules that dealwith division, differ-
entiation and death of cells. The resulting model can be successfully animated by the
PPS-System, which simulates the computation that takes place.

T
ran

sform
in

g
state-b

ased
m

o
d
els

to
P

S
ystem

s
m

o
d
els

in
p
ractice

2
6

1

PPS
¯

PPSDL syntax
¯

Informal semantics
¯

V #object (obj name) =(type name1, . . .)
Objects in cells defined as either singletons or tuples usingonly pre-
defined types. The union of all objects form the alphabet.

K #cell types = (cell type1, . . . , cell typem) Cell types defined as an enumerated set of labels
#cell names =

{cell name1, . . . , cell namen}
Cells defined as set of identifiers present in the initial configuration

γ
#graph graph name =

{(cell name1, cell name2), . . .}
The initial graph configuration as set of tuples of communicating cells’
names

wE #env objects = {obj1, obj2, . . .} Environment objects defined as an enumerated set of objects

Ci = (wi, ti) #cell (cell name1) : ([obj1, obj2, . . .], cell type).
Individual cells defined as a tuple of the multiset of objectsthey contain
and their cell type

(a→ b)t

#transformation rule rule name

([obj1, . . .] -> [obji, . . .]): cell type1,

if cond1 (and|or) cond2, . . . ,

where informative expression.

Transformation rule
(for a particular cell type)

(a; b, in)t,
(a; b, enter)t

#communication in rule rule name

(when [obj1, . . .] receive [obji, . . .]

(from cell | from environment)) : cell type.

Communication rule
(importing objects)

(a, exit, b)t

#communication exit rule rule name

(when [obji, . . .] (send to cell

| send to environment) [objj , . . .]) :

cell type.

Communication rule
(exporting objects)

(a)t → (b)p

#differentiation rule rule name

([obj1, . . .]) : cell type1

-> ([obji, . . .]) : cell type2.
Differentiation rule

(a)t →
(b)t(c)t

#division rule rule name ([obj1, . . .]) :

cell type

->([obji, . . .]) : cell type ([objj , . . .]) : cell type.
Division rule

(a)t → † #death rule rule name ([obj1, . . .]) : cell type

->+
Death rule

(i, x1; x2, j)
#bond making rule rule name

(when [obj1, ...] : cell type

and [obj1, ...] : cell type).

Bond-making rule

#define identifier = user defined

| set operations | built- in type | tuple

Defines types of values to be used in all constructs. User defined
types include enumerated sets, sequences, etc., while operation include
unions, Cartesian products (tuples) etc.

Table
3.5

M
ain

constructs
ofP

P
S

D
L

(w
ords

in
uprightfontare

P
P

S
D

L
key

w
ords).

262 Transforming state-based models to P Systems models in practice

Bibliography

[1] F. Bernardini and M. Gheorghe. Population P Systems.Journal of Universal Com-
puter Science, 10

¯
(5):509–539, 2004.

[2] G. Eleftherakis.Formal Verification of X-machine Models: Towards Formal De-
velopment of Computer-based Systems. PhD thesis, Department of Computer Sci-
ence, University of Sheffield, 2003.

[3] M. Gheorghe, I. Stamatopoulou, M. Holcombe, and P. Kefalas. Modelling dynam-
ically organised colonies of bio-entities. In J.-P. Banâtre, P. Fradet, J.-L. Giavitto,
and O. Michel, editors,Unconventional Programming Paradigms: International
Workshop, (UPP’04), Le Mont Saint Michel, France, September 15-17, 2004, Re-
vised Selected and Invited Papers, volume 3566 ofLecture Notes in Computer
Science, pages 207–224. Springer-Verlag, 2005.

[4] M. Holcombe and F. Ipate.Correct Systems: Building a Business Process Solution.
Springer-Verlag, London, 1998.

[5] E. Kapeti and P. Kefalas. A design language and tool for X-machines specification.
In D. I. Fotiadis and S. D. Spyropoulos, editors,Advances in Informatics, pages
134–145. World Scientific Publishing Company, 2000.

[6] P. Kefalas.XMDL User Manual. CITY College, Thessaloniki, Greece – Affiliated
Institution of the University of Sheffield, 2000.

[7] P. Kefalas. Formal modelling of reactive agents as an aggregation of simple be-
haviours. In I. P. Vlahavas and C. D. Spyropoulos, editors,Proceedings of the 2nd
Hellenic Conference on Artificial Intelligence, volume 2308 ofLecture Notes in
Artificial Intelligence, pages 461–472. Springer-Verlag, 2002.

[8] P. Kefalas, G. Eleftherakis, and E. Kehris. Modular modelling of large-scale sys-
tems using communicating X-machines. In Y. Manolopoulos and S. Evripidou,
editors,Proceedings of the 8th Panhellenic Conference in Informatics, pages 20–
29. Livanis Publishing Company, 2001.

[9] P. Kefalas, G. Eleftherakis, and A. Sotiriadou. Developing tools for formal meth-
ods. InProceedings of the 9th Panhellenic Conference in Informatics, pages 625–
639, 2003.

[10] P. Kefalas, I. Stamatopoulou, and M. Gheorghe. Principles of transforming Com-
municating X-machines to Population P Systems. In G. Vaszil, editor,Proceedings
of the International Workshop on Automata for Cellular and Molecular Compu-
ting (ACMC’07), pages 76–89, 2007.

[11] G. Păun. Computing with membranes.Journal of Computer and System Sciences,
61
¯

(1):108–143, 2000. Also circulated as a Turku Center for Computer Science
(TUCS) report since 1998.

[12] I. Stamatopoulou, M. Gheorghe, and P. Kefalas. Modelling dynamic configuration
of biology-inspired multi-agent systems with Communicating X-machines and
Population P Systems. In G. Mauri, G. Păun, M. J. Pérez-Jiménez, G. Rozenberg,
and A. Salomaa, editors,Membrane Computing: 5th International Workshop, vol-
ume 3365 ofLecture Notes in Computer Science, pages 389–401. Springer-Verlag,
Berlin, 2005.

Transforming state-based models to P Systems models in practice 263

[13] I. Stamatopoulou, P. Kefalas, G. Eleftherakis, and M. Gheorghe. A modelling lan-
guage and tool for Population P Systems. InProceedings of the 10th Panhellenic
Conference in Informatics (PCI’05), Volos, Greece, November 11-13, 2005.

[14] I. Stamatopoulou, P. Kefalas, and M. Gheorghe. OPERAS:a formal framework
for multi-agent systems and its application to swarm-basedsystems. In A. Artikis,
G. O’Hare, K. Stathis, and G. Vouros, editors,Proceedings of the 8th International
Workshop on Engineering Societies in the Agents World (ESAW’07), pages 208–
223, 2007.

[15] The P Systems webpage. P Systems Software (last visitedon April 17, 2008).
http://ppage.psystems.eu/index.php/Software.

[16] C. Thomson and M. Holcombe. Using a formal method to model software de-
sign in XP projects. In G. Eleftherakis, editor,Proceedings of the 2nd South-East
European Workshop on Formal Methods, pages 74–88, 2005.

[17] Transforming state-based models to P Systems models inpractice. Support docu-
mentation and demos. www.city.academic.gr/csd/kefalas/XMDL
toPPSDL/index.html.

How Redundant is your Universal
Computation Device?

———————————————
Alberto Leporati, Claudio Zandron, Giancarlo Mauri

Università degli Studi di Milano – Bicocca,
Dipartimento di Informatica, Sistemistica e Comunicazione,
Viale Sarca 336/14, 20126 Milano, Italy
{leporati,zandron,mauri }@disco.unimib.it

Given a computational modelM, and a “reasonable” encoding functionC :
M → {0, 1}∗ that encodes any computation deviceM of M as a finite bit
string, we define thedescription sizedsC(M) of M (under the encodingC) as
the length ofC(M). The description sizedsC(M) of the entire classM (under
the encodingC) can then be defined as the length of the shortest bit string that
encodes auniversaldevice ofM, that is, the minimum of the description sizes
dsC(M) for M that varies over the set of universal devices contained inM.
In this paper we compute upper bounds to the description sizeof three com-
putational models, namely, deterministic register machines, spiking neural P
systems and UREM P systems. Then we compute (lower bounds to)theredun-
dancyof each of these models, as the ratio between their description size and the
description size of a fixed universal deterministic register machine, here taken
as a reference. These computations open the way and provide some first partial
answers to the following intriguing question: what is the minimal (description)
size of a universal computing device?

1 Introduction

As it is well known, the Church–Turing thesis states that every computable function is
Turing computable, which means that there exists a (deterministic) Turing machine that
computes it. Further, a classic result in the Theory of Computation states that there ex-
ists a (deterministic) universal Turing machineU that, given any (deterministic) Turing
machineM and its inputI, is able to simulate the execution ofM with I as input. The
simulated machineM has of course to be encoded in an appropriate way to be given as
input toU .

However, Turing machines are by no means the only interesting computation devices
investigated in the literature: there are, for example, several variants of register (also
counter) machines [17, 14], Post’s tag systems [21], the lambda calculus [13, 3], sev-
eral variants of P systems [19,20,29], and many others. Confirming the Church–Turing
thesis, all these systems can be simulated by deterministicTuring machines; when also

266 How Redundant is your Universal Computation Device?

the converse simulation can be performed we say that the corresponding computation
device isTuring complete, or universal, since by simulating a universal Turing machine
we are able to compute any Turing computable (that is, partial recursive) function. In-
deed, this is what happens with all the computation devices mentioned above, at least
in their general (unrestricted) version; indeed, an interesting direction of research in the
Theory of Computation consists into putting some constraints to the features which are
used by the devices to perform their computations, and see whether they still reach the
computational power of (unrestricted) Turing machines.

Looking for small universal computing devices is a natural and well investigated topic
in computer science: see e.g. [14, 26, 16, 22–24, 15, 28] for classic computational mod-
els, [25, 8, 5] for tissue and symport/antiport P systems, [27, 4] for universal cellular
automata such as Conway’s Game of Life and Wolfram’s Rule 110, and [18] for spik-
ing neural P systems. A related question that we try to answerin this paper is: What is
the size of thesmallestuniversal computation device? Of course we must agree on the
meaning of the term “size”; as we will see in the next section,the size of a given device
may depend on several parameters (for example, the number ofregisters and the number
of program instructions when speaking of register machines), whose number and possi-
ble values vary depending on the device under consideration. Trying to find a common
unit to measure the size of different computation devices, in section 3 we will define
thedescription sizeof a computation device as the number of bits which are neededto
describe it. Precisely, for a given model of computationM (for example, register machi-
nes), we will define an encoding functionC : M → {0, 1}∗ that associates a bit string
to every computing deviceM taken fromM; the description sizedsC(M) of M (under
the encodingC) will be the length of the bit stringC(M), whereas the description size
of the entire classM will be the minimum between the description sizesdsC(M) for M
that varies over the set ofuniversalcomputing devices contained inM. In this paper we
start a quest for the shortest possible bit string that describes a universal computation
device; in other words, we look for a computational modelM and an encoding func-
tion C : M → {0, 1}∗ such thatM contains at least one universal computation device
anddsC(M) is as low as possible. To this aim, we will compute the description size of
randomly generated deterministic register machines, spiking neural P systems [11] and
UREM P systems [6], as well as the size of a specificsmalluniversal instance of each
of these computational models. Then, by taking deterministic register machines as the
reference model, we will compute the redundancy of the two membrane computing de-
vices here considered as the ratio between their description size and the description size
of the smallest (to the best knowledge of the authors) universal deterministic register
machine currently known. As a result, we will have an idea about how verbose are such
models of computation in catching the notion of universality.

A word of caution is due: with our work, we are not saying that the most compact
computational model is the best: a computation device that requires a lot of features to
perform its computations may be more interesting than others because of many reasons.
A notable example is given by traditional P systems, whose structure and behavior are

How Redundant is your Universal Computation Device? 267

inspired from the functioning of living cells; the amount oftheoretical results and appli-
cations reported in the bibliography of [29] is certainly anindication of how interesting
is such a model of computation.

The paper is structured as follows. In section 2 we briefly recall the definition of the
computational models we will work upon: deterministic register machines, spiking neu-
ral P systems and UREM P systems. In section 3 we will define andcompute the de-
scription size ofrandomly choseninstances of all these models. We will also consider
a universal instance (taken from the literature) of each of these models, and we will
compute both its description size and the redundancy with respect to the smallest (to
the best knowledge of the authors) currently known deterministic register machine. In
section 4 we draw some conclusions, we criticize some limitsof our approach and we
propose some directions for future research.

2 Some (universal) models of computation

Let us briefly recall the three computational models that we will use to investigate the
description size and the redundancy of universal computingdevices.

2.1 Deterministic register machines A deterministicn–register machineis a con-
structM = (n, P, m), wheren > 0 is the number of registers,P is a finite sequence
of instructions bijectively labelled with the elements of the set{0, 1, . . . , m − 1}, 0 is
the label of the first instruction to be executed, andm− 1 is the label of the last instruc-
tion of P . Registers contain non-negative integer values. The instructions ofP have the
following forms:

• j : (INC(r), k), with j, k ∈ {0, 1, . . . , m− 1} andr ∈ {0, 1, . . . , n− 1}
This instruction, labelled withj, increments the value contained in registerr, and
then jumps to instructionk.

• j : (DEC(r), k, l), with j, k, l ∈ {0, 1, . . . , m− 1} andr ∈ {0, 1, . . . , n− 1}
If the value contained in registerr is positive then decrement it and jump to in-
structionk. If the value ofr is zero then jump to instructionl (without altering the
contents of the register).

Computations start by executing the first instruction ofP (labelled with0), and termi-
nate when the instruction currently executed tries to jump to labelm.

Formally, aconfigurationis a(n + 1)-tuple whose components are the contents of the
n registers, and the label of the next instruction ofP to be executed. Aninitial config-
uration is a configuration in which the input values(n1, . . . , nα) ∈ Nα are stored in
registers0 to α−1, all the other registers are set to0, and the label of the next istruction
to be executed is also set to0. A final configurationis a configuration in which the label
of the next instruction is equal tom. A computationstarts in the initial configuration,

268 How Redundant is your Universal Computation Device?

and proceeds by performing computation steps. Acomputation stepconsists of execut-
ing the current instruction, modifying accordingly the contents of the affected register
and the pointer to the next instruction to be executed. A computation halts if it reaches a
final configuration. The contents of the registers in the finalconfiguration are regarded
as the result of the computation. A non–halting computationdoes not produce a result.

Register machines provide a simple universal computational model. Indeed, the results
proved in [7] (based on the results established in [17]) as well as in [9] and [10] imme-
diately lead to the following proposition.

Proposition 1 For any partial recursive functionf : Nα → Nβ there exists a de-
terministic (max{α, β} + 2)–register machineM computingf in such a way that,
when starting with(n1, . . . , nα) ∈ Nα in registers0 to α − 1, M has computed
f(n1, . . . , nα) = (r1, . . . , rβ) if it halts in the final labelm with registers0 to β − 1
containingr1 to rβ , and all other registers being empty; if the final label cannot be
reached, thenf(n1, . . . , nα) remains undefined.

2.2 Spiking neural P systems Spiking neural P systems (SN P systems, for short)
have been introduced in [11] as a class of synchronous, parallel and distributed compu-
ting devices, inspired by the neurophysiological behaviorof neurons sending electrical
impulses along axons to other neurons.

In SN P systems the cells (also calledneurons) are placed in the nodes of a directed
graph, called thesynapse graph. The contents of each neuron consist of a number of
copies of a single object type, called thespike. Every cell may also contain a number
of firing andforgettingrules. Firing rules allow a neuron to send information to other
neurons in the form of spikes, which are accumulated at the target cells. The applicabil-
ity of each rule is determined by checking the contents of theneuron against a regular
set associated with the rule. In each time unit, if a neuron can use some of its rules then
one of such rules must be used. The rule to be applied is nondeterministically chosen.
Thus, the rules are used in a sequential manner in each neuron, but neurons function
in parallel with each other. Observe that, as usually happens in membrane computing,
a global clock is assumed, marking the time for the whole system, hence the function-
ing of the system is synchronized. When a cell sends out spikes it becomes “closed”
(inactive) for a specified period of time, that reflects the refractory period of biological
neurons. During this period, the neuron does not accept new inputs and cannot “fire”
(that is, emit spikes). Another important feature of biological neurons is that the length
of the axon may cause a time delay before a spike reaches its target. In SN P systems
this delay is modeled by associating a delay parameter to each rule which occurs in the
system. If no firing rule can be applied in a neuron, there may be the possibility to apply
a forgetting rule, that removes from the neuron a predefined number of spikes.

Formally, aspiking neural membrane system(SN P system, for short) of degreem ≥ 1,
as defined in [12] in the computing version (i.e., able to takean input and provide and

How Redundant is your Universal Computation Device? 269

output), is a construct of the form

Π = (O, σ1, σ2, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is calledspike);

2. σ1, σ2, . . . , σm areneurons, of the formσi = (ni, Ri), 1 ≤ i ≤ m, where:

(a) ni ≥ 0 is theinitial number of spikescontained inσi;
(b) Ri is a finite set ofrulesof the following two forms:

(1) firing (alsospiking)rulesE/ac → a; d, whereE is a regular expression
overa, andc ≥ 1, d ≥ 0 are integer numbers; ifE = ac, then it is usually
written in the simplified form:ac → a; d; similarly, if d = 0 then it can
be omitted when writing the rule;

(2) forgetting rules as → λ, for s ≥ 1, with the restriction that for each
rule E/ac → a; d of type (1) fromRi, we haveas 6∈ L(E) (the regular
language defined byE);

3. syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m}, with (i, i) 6∈ syn for 1 ≤ i ≤ m, is the
directed graph ofsynapsesbetween neurons;

4. in, out ∈ {1, 2, . . . , m} indicate theinput and theoutputneurons ofΠ, respec-
tively.

A firing rule E/ac → a; d ∈ Ri can be applied in neuronσi if it containsk ≥ c spikes,
andak ∈ L(E). The execution of this rule removesc spikes fromσi (thus leaving
k − c spikes), and prepares one spike to be delivered to all the neuronsσj such that
(i, j) ∈ syn. If d = 0 then the spike is immediately emitted, otherwise it is emitted
afterd computation steps of the system. As stated above, during thesed computation
steps the neuron isclosed, and it cannot receive new spikes (if a neuron has a synapse to
a closed neuron and tries to send a spike along it, then that particular spike is lost), and
cannot fire (and even select) rules. Aforgettingruleas → λ can be applied in neuronσi

if it containsexactlys spikes; the execution of this rule simply removes all thes spikes
from σi.

A common generalization of firing rules was introduced in [2,18] under the name of
extended rules. These rules are of the formE/ac → ap; d, wherec ≥ 1, p ≥ 1 and
d ≥ 0 are integer numbers. The semantics of these rules is the sameas above, with the
difference that nowp spikes are delivered (afterd time steps) to all neighboring neurons.

The initial configurationof the system is described by the numbersn1, n2, . . . , nm of
spikes present in each neuron, with all neurons being open. During the computation, a
configuration is described by both the contents of each neuron and itsstate, which can
be expressed as the number of steps to wait until it becomes open (zero if the neuron is
already open).

270 How Redundant is your Universal Computation Device?

A computationstarts in the initial configuration. In order to compute a function f :
N → N (functions of the kindf : Nα → Nβ , for any fixed pair of integersα ≥ 1
andβ ≥ 1, can also be computed by using appropriate bijections fromNα andNβ

to N), a positive integer number is assigned as input to the specified input neuronin.
In the original model, as well as in some early variants, the number is encoded as the
number of time steps elapsed between the insertion of two spikes into the neuron. To
pass from a configuration to another one, for each neuron a rule is chosen among the set
of applicable rules, and is executed. Generally, a computation may not halt. However, in
any case the output of the system is considered to be the time elapsed between the arrival
of two spikes in the designated output cellout. Other possibilities exist to encode input
and output numbers, as discussed in [12]: as the number of spikes contained in neuron
in (resp.,out) at the beginning (resp., the end) of the computation, as thenumber of
spikes fired in a given interval of time, etc.

In [11] it is shown thatgenerative(nondeterministic) SN P systems are universal, that
is, can generate any recursively enumerable set of natural numbers. Moreover, a char-
acterization of semilinear sets is obtained by spiking neural P systems with a bounded
number of spikes in the neurons. In [18] two small deterministic universal SN P systems
are defined, one containing only standard rules, with84 neurons, and one containing ex-
tended rules, with49 neurons. Their universality is proved by simulating deterministic
register machines, by using appropriate modules to read theinput spike train, to simu-
lateINC andDEC instructions, and to produce (if and when the computation ofthe
simulated register machine halts) the output spike train.

2.3 UREM P systems P systems with unit rules and energy assigned to the mem-
branes (UREM P systems, for short) have been introduced in [6] as a variant of P sys-
tems in which a non–negative integer value (regarded as an amount of energy) is as-
signed to each membrane of the system. The rules are assignedto the membranes rather
than to the regions of the system, and operate like filters that control the movement of
objects (symbols of an alphabet) across the membranes.

Formally, a UREM P system [6] of degreed + 1 is a constructΠ of the form:

Π = (A, µ, e0, . . . , ed, w0, . . . , wd, R0, . . . , Rd)

where:

• A is an alphabet ofobjects;
• µ is amembrane structure, with the membranes labelled by numbers0, . . . , d in a

one-to-one manner;
• e0, . . . , ed are the initial energy values assigned to the membranes0, . . . , d. In what

follows we assume thate0, . . . , ed are non–negative integers;
• w0, . . . , wd are multisets overA associated with the regions0, . . . , d of µ;
• R0, . . . , Rd are finite sets ofunit rulesassociated with the membranes0, . . . , d.

Each rule has the form(α : a, ∆e, b), whereα ∈ {in, out}, a, b ∈ A, and|∆e| is

How Redundant is your Universal Computation Device? 271

the amount of energy that — for∆e ≥ 0 — is added to or — for∆e < 0 — is
subtracted fromei (the energy assigned to membranei) by the application of the
rule.

By writing (αi : a, ∆e, b) instead of(α : a, ∆e, b) ∈ Ri, we can specify only one set
of rulesR with R = {(αi : a, ∆e, b) : (α : a, ∆e, b) ∈ Ri, 0 ≤ i ≤ d}.

The initial configurationof Π consists ofe0, . . . , ed and w0, . . . , wd. The transition
from a configuration to another one is performed bynon-deterministicallychoosing
one rule from someRi and applying it (observe that here we consider asequential
model of applying the rules instead of choosing rules in a maximally parallel way, as it
is often required in P systems). Applying(ini : a, ∆e, b) means that an objecta (being
in the membrane immediately outside ofi) is changed intob while entering membrane
i, thereby changing the energy valueei of membranei by ∆e. On the other hand, the
application of a rule(outi : a, ∆e, b) changes objecta into b while leaving membranei,
and changes the energy valueei by ∆e. The rules can be applied only if the amountei

of energy assigned to membranei fulfills the requirementei + ∆e ≥ 0. Moreover, we
use some sort of local priorities: if there are two or more applicable rules in membrane
i, then one of the rules withmax |∆e| has to be used.

A computationis a sequence of transitions; it issuccessfulif and only if it halts. The
resultof a successful computation is considered to be the distribution of energies among
the membranes (a non–halting computation does not produce aresult). If we consider
the energy distribution of the membrane structure as the input to be processed and the
resulting output, we obtain a model for computing functionsof the kindf : Nα → Nβ ,
for any fixed pair of integersα, β ≥ 1. The following result, proved in [6], establishes
computational completeness for this model of P systems.

Proposition 2 Every partial recursive functionf : Nα → Nβ can be computed by a
UREM P system with (at most)max{α, β}+ 3 membranes.

The proof of this proposition is obtained by simulating deterministic register machines.
In the simulation, a P system is defined which contains one elementary membrane into
the skin for each register of the simulated machine. The contents of the register are ex-
pressed as the energy valueei assigned to thei-th subsystem. A single object is present
in the system at every computation step, which stores the label of the instruction of
the programP currently simulated. Increment instructions of the kindj : (INC(i), k)
are simulated in two steps by using the rules(ini : pj , 1, p̃j) and (outi : p̃j , 0, pk).
Decrement instructions of the kindj : (DEC(i), k, l) are also simulated in two steps,
by using the rules(ini : pj, 0, p̃j) and(outi : p̃j ,−1, pk) or (outi : p̃j , 0, pl). The use
of priorities associated to these last rules is crucial to correctly simulate a decrement
instruction. For the details of the proof we refer the readerto [6].

272 How Redundant is your Universal Computation Device?

We conclude this section by observing that if we just want to reach Turing complete-
ness with UREM P systems it is not necessary to exploit neither nondeterminism nor
the membrane structure: as stated above, a simpledeterministicsystem which is com-
posed by a skin that contains an elementary membrane for eachregister of the simulated
register machine suffices. It will be thus interesting to measure how redundant is this
universal model of computation with respect to the more compact deterministic register
machines. We also observe that the use of local priorities isinstead important, since
by omitting them we do not get systems with universal computational power. Precisely,
in [6] it is proved that (nondeterministic) UREM P systems without priorities and with
an arbitrary number of membranes characterize the familyPsMAT λ of Parikh sets
generated by context–free matrix grammars (without occurrence checking and withλ-
rules).

3 Description size

As stated in the Introduction, we define thedescription sizeof a given computation de-
viceM as the length of the binary string which encodes the structure ofM . Since this is
an informal definition, we have to discuss some technical difficulties that immediately
arise. First of all, for any given computational modelM (register machines, SN P sys-
tems, etc.) we have to find a “reasonable” encoding functionC : M → {0, 1}∗, in the
sense given in [1]. Such a function should be able to encodeanycomputation deviceM
of M as a finite bit string. When this string is interpreted (that is, decoded) according to
a specified set of rules (thedecoding algorithm), the decoder unambiguously recovers
the structure ofM . In order to avoid cheating — by hiding information into the encod-
ing or decoding algorithms — we ask to consider only reasonable encodings that satisfy
the following requirements.

1. For each model of computation, the encoding and decoding algorithms are fixed a
priori, and their representation as a program for a deterministic register machine
or as a deterministic Turing machine have a fixedfinite length. Note that, when
computing the description size of a given device, we will notcount the size of the
encoding and decoding algorithms; moreover, instead of formally specifying such
algorithms, we will only provideinformal instructions on how to encode and de-
code our computation devices. An alternative approach, notfollowed in this paper,
consists of minimizing the size of the decoding — and, possibly, encoding — algo-
rithm (that is, its Kolmogorov complexity) together with the length of the encoded
strings.

2. With the selected encoding algorithm it should be possible to describeanyinstance
of the computational model under consideration (for example, any deterministic
register machine). Encodings that allow to represent in a very compact form only
one or a few selected instances of the computational model (for example, all the
register machines whose programP contains exactly five instructions) are not con-
sidered acceptable.

How Redundant is your Universal Computation Device? 273

Another point to consider is the following: Given an encoding function for a compu-
tational model, how much should we care about the fact that itproduces the shortest
possible bit strings? On the one hand, we clearly prefer bit strings which are as short
as possible. On the other hand, without loss of generality wecan restrict our attention
to encodings that produce strings whose length is polynomial with respect to the pa-
rameters that determine the size of the encoded device (for example, the numbern of
registers and the lengthm of the programP in deterministic register machines). All
such encodings produce strings whose lengths differ by at most a polynomial amount,
and thus we could be tempted to accept such differences and decide to work with handy
but verbose encodings rather than with more compact but alsouncomfortable ones. In
order to find results which depend as little as possible on thechosen encoding, when
calculating the description size of our universal instances of the computational models
here considered (deterministic register machines, SN P systems and UREM P systems)
we will use (when feasible) theentropyof the encoded string to determine its description
size. This behavior is justified by the fact that optimal entropy-based lossless compres-
sions, such as the Huffman encoding, produce binary stringswhose average length is
as near as possible to the entropy (that is, the average amount of information) of the
uncompressed input string. Of course many other lossless compression algorithms may
be used, but we will not consider them in this paper.

We can look at any computational model as a family of computation devices, whose size
depends upon a prefixed collection of parameters. For example, the class of all deter-
ministic register machines is composed by machines which haven registers and whose
programs are composed bym instructions, for all possible integersn ≥ 1 andm ≥ 0.
Denoted byM a computational model, and by(n1, n2, . . . , nk) the non–negative in-
teger parameters upon which the size of the computing devices of M depend, we can
write M =

⋃
n1,...,nk

{M(n1, . . . , nk)}, whereM(n1, . . . , nk) is the instance ofM
(that is, a specific computation device) for which the parameters have the indicated val-
uesn1, . . . , nk.

Let C : M→ {0, 1}∗ denote a fixed encoding ofM, and letM be a computation device
from M. By dsC(M) = |C(M)| (the length ofC(M)) we will denote the description
size ofM , obtained by using the encodingC, and bydsC(M) we will denote the length
of the most compact representation — produced by the encoding algorithm ofC — of a
universalcomputing device taken from the classM, that is:

dsC(M) = min{dsC(M) : M ∈M is universal}

By definition, for any fixed universal computing deviceM ∈M the valuedsC(M) is an
upper bound fordsC(M). We say that a universal computing deviceM∗ ∈ M is opti-
mal (referred to the description size, for a prefixed encodingC) if dsC(M∗) = dsC(M).
Given two classes of computational devicesM andM′ (with possiblyM = M ′), we
define theredundancyof a universal computation deviceM ′ ∈ M′, with respect to
the computational modelM and the encodingC, asRM,C(M ′) = dsC(M ′)

dsC(M) . Similarly,
we define the redundancy of a computational modelM′ (with respect toM andC) as

274 How Redundant is your Universal Computation Device?

RM,C(M′) = dsC(M′)
dsC(M) . Finally, by lettingC vary on the class of all possible “reason-

able” encodings, for any computational modelsM andM′ we can define:

ds(M) = min
C

{dsC(M)} and RM(M′) =
ds(M′)

ds(M)

that is, the description complexity ofM and the redundancy ofM′ with respect toM,
respectively.

Let us note that the quantitiesds(M) anddsC(M), for some fixed computational model
M and encodingC, may be difficult to find, as it usually happens with theoretical
bounds. Hence in general we will obtain upper bounds to thesequantities, and thus
lower bounds for the corresponding redundancies. The final goal of the research line
set out with this paper is to find a universal computational classM and an encoding
C : M → {0, 1}∗ whose description sizedsC(M) is as low as possible, and even-
tually an optimal instanceM ∈ M. In this way, no other modelM′ that contains
a universal computation device would haveds(M′) < dsC(M), and hence the value
dsC(M) = dsC(M) could be regarded as thedescription size complexityof universal-
ity: in other words, it would be the minimal number of bits which are needed to describe
the ability to compute Turing computable (that is, partial recursive) functions.

In the next subsections we will compute the description sizeof randomly generated
computing devices taken from the classes recalled in section 2: deterministic register
machines, spiking neural P systems and UREM P systems. Then,we will also compute
the description size of a small universal device taken from each of these classes, with
respect to a prefixed encoding, thus providing upper bounds to the description sizes of
the whole classes.

In what follows, for any natural numbern we will simply denote bylg n the number
⌈log2 n⌉+ 1 of bits which are needed to representn in binary form.

3.4 Deterministic register machines Let DRM denote the class of deterministic
register machines. In order to encode a particular machineM ∈ DRM we first have to
specify the numbern of registers (that will be numbered from0 to n−1) and the number
m of instructions (numbered from0 to m− 1) that compose the programP . These will
be the parameters upon which the size ofM will depend. Denoted by DRM(n, m)
the subclass of register machines that haven registers and programs composed ofm
instructions, we can thus write DRM =

⋃
n≥1,m≥0 DRM(n, m).

Let M ∈ DRM(n, m) be a register machine, and letP denote its program. To describe
a single instruction ofP , we need 1 bit to say whether it is anINC or a DEC in-
struction,lg n bits to specify the register which is affected, andlg m bits (resp.,2 · lg m
bit) to specify the jump label (resp., the two jump labels) for the INC (resp.,DEC)
instruction.

How Redundant is your Universal Computation Device? 275

0 : (DEC(1), 1, 2) 1 : (INC(7), 0)

2 : (INC(6), 3) 3 : (DEC(5), 2, 4)

4 : (DEC(6), 5, 3) 5 : (INC(5), 6)

6 : (DEC(7), 7, 8) 7 : (INC(1), 4)

8 : (DEC(6), 9, 0) 9 : (INC(6), 10)

10 : (DEC(4), 0, 11) 11 : (DEC(5), 12, 13)

12 : (DEC(5), 14, 15) 13 : (DEC(2), 18, 19)

14 : (DEC(5), 16, 17) 15 : (DEC(3), 18, 20)

16 : (INC(4), 11) 17 : (INC(2), 21)

18 : (DEC(4), 0, 22) 19 : (DEC(0), 0, 18)

20 : (INC(0), 0) 21 : (INC(3), 18)

Fig. 3.1 The small universal deterministic register machine definedin [14]

A simple encoding of a deterministic register machine havingn registers andm instruc-
tions is a sequence ofm blocks, each composed of1+lgn+lgm or1+lgn+2·lgm bits,
encoding the corresponding instruction ofP . In order to correctly and unambiguously
decode a bit string that encodes a register machine from DRM(n, m), we also need to
store in a separate place the numbersn andm; this will require furtherlg n + lg m bits.

For arandomly chosen(and thus, possibly, non–universal) machineM ∈ DRM(n, m),
about half of the instructions ofP will be INCs and half will beDECs; hence the
description size ofM , with respect to the encodingC we have just defined, will be:

dsC(M) =
m

2
[1 + lg n + lg m] +

m

2
[1 + lg n + 2 · lg m]

= m · [1 + lg n] +
3m

2
lg m

In order to compute an upper bound tods(DRM) we have instead to restrict our at-
tention touniversalregister machines. In [14], several universal register machines are
described and investigated. In particular, thesmalluniversal register machine depicted
here in Figure 3.1 is defined. This machine hasn = 8 registers andm = 22 instruc-
tions. However, recall that we need a further label (22) to halt the execution ofP any-
time by simply jumping to it, and thus we putm = 23. The number of bits required
to store these values are3 and5, respectively. The encoding of this machine produces
a bit string which is composed of22 blocks, one for each instruction ofP . Each reg-
ister will require3 bits to be specified, and each label will require5 bits. If we denote
INC instructions by a0, andDEC instructions by a1, then the first block will be
1 001 00001 00010, where we have put a small space to make clear how the block is

276 How Redundant is your Universal Computation Device?

formed: the first1 denotes aDEC instruction, which has to be applied to register num-
ber1 (= 001), and the two labels to jump to when we have executed the instruction are
1 (= 00001) and2 (= 00010). Similarly, the block that encodes the second instruction
is 011100000 (here we have omitted the unnecessary spaces), whereas the string that
encodes the whole machineM is:

10010000100010 011100000 011000011 11010001000100

11100010100011 010100110 11110011101000 000100100

11100100100000 011001010 11000000001011 11010110001101

11010111001111 10101001010011 11011000010001 10111001010100

010001011 001010101 11000000010110 10000000010010

000000000 001110010

Here the spaces denote a separation between two consecutiveblocks; of course these
spaces are put here only to help the reader, but are not necessary to decode the string.
We can thus conclude that, referring to the encodingC given above:

dsC(M) = 14 ∗ 13 + 9 ∗ 9 = 182 + 81 = 263

Since our final goal is to find the shortest bit string that encodes a universal computation
device, we could wonder how many bits we would save bycompressingthe above se-
quence. Many compression algorithms exist, that yield to different results. Here we just
consider entropy-based compressors, such as the Huffman algorithm, and we compute
a bound on the length of the compressed string. If we look at the above bit string, we
can see that it contains154 zeros and109 ones. Hence in each position of the string we
have the probabilityp0 = 154

263 that a0 occurs, and the probabilityp1 = 109
263 that a1

occurs. By looking at the output of the encoding algorithm asamemorylessinformation
source, we can compute the entropy of the above sequence, that measures the average
amount of information carried by each bit of the string:

H(M) = −p0 log2 p0 − p1 log2 p1 ≈ 0.979

Now, by applying an optimal entropy-based compressor we would obtain a compressed
string whose length is approximately equal to the length of the uncompressed string
times the entropy, that is,⌈263 · 0.979⌉ = 258 bits. Such a quantity is less than263, but
of course is still an upper bound tods(DRM), the (unknown, and possibly very difficult
to determine) description size complexity of deterministic register machines.

These results can be compared with those obtained by observing that (of course) also
Figure 3.1 depicts an encoding of the register machine: by ignoring the spaces, carriage
returns and the labels in front of each instruction, we can represent the machine as
(DEC(1), 2)(INC(7), 0)(INC(6), 3) . . . that, expressing each character in standard
7-bit ASCII code, produces a string of1841 bits (= 263 · 7, exactly seven times the
length obtained with the previous encoding), containing1082 zeros and759 ones. The

How Redundant is your Universal Computation Device? 277

probability that a0 occurs in such a string is thusp0 = 1082
1841 ≈ 0.588; similarly, the

probability that a1 occurs isp1 = 759
1841 ≈ 0.418, and thus the entropy isH(M) =

−p0 log2 p0 − p1 log2 p1 ≈ 0.978. As we can see, we have obtained almost exactly the
same value for the entropy that we obtained with the previousencoding (indeed, we
performed our computation using three decimal digits, hence the third decimal digit of
the result could be wrong due to roundings). This time, however, by compressing the
encoded string by means of an optimal entropy encoder we would obtain about⌈1841 ·
0.978⌉ = 1801 bits. This result confirms that the first encoding has to be preferred if
one looks for compact representations.

As stated above, the choice of a different category of (lossless) compression algorithms
may yield to different string lengths. Moreover, even if we restrict our attention to
entropy-based compressors the fact that we have modelled the output of the encod-
ing algorithm as a memoryless information source is questionable. In fact, it is clear
that when we encouter a0 at the beginning of a new block that encodes an instruction
of the register machine then we already know that8 bits will follow, instead of13, since
we are reading anINC instruction. This means that the occurrence of the bits in the
sequence does depend somehow upon the bits which have already been emitted by the
source, and to capture this dependence we should use a sourceendowed with memory,
such as a Markovian source.

3.5 Spiking neural P systems Let us denote by SNP the class of SN P systems.
In order to encode a particular systemΠ ∈ SNP, we have to specify the following
parameters:

• thedegreem, that is, the number of neurons;
• the total numberR of rules contained in the system;
• the maximum numberC of spikes consumed by any rule in the system;
• the maximum delayD that occurs in the rules.

In order to describe the synapse graph (which is a directed graph, without self–loops)
we needm2−m bits. To describe a forgetting ruleas → λ we need1 bit to distinguish
it from spiking rules, andlg C bits to represent the value ofs. On the other hand, to
describe a firing ruleE/ac → a; d we need1 bit to distinguish it from forgetting rules,
lg C bits to representc and lg D bits to representd; moreover, we need some bits to
describe the regular expressionE. In general, there are no limitations to the length of
a regular expression, but by observing the systems described in [18] we note that the
following five types of expressions suffice to reach computational completeness:

a, a2, a3, a(aa)+, a(aa)∗

and thus we will restrict our attention to systems that contain only these kinds of
regular expressions. Of course this restriction will influence our results; any differ-
ent choice of the set of regular expressions is valid, provided that the class of SN

278 How Redundant is your Universal Computation Device?

P systems thus obtained contains at least one universal computation device (if one
is interested in finding an upper bound to the description size of SN P systems). To
specify one of the above five expressions we need3 bits, and hence we need a to-
tal of 1 + lg C bits to describe a forgetting rule, and1 + 3 + lg C + lg D bits to
describe a firing rule. On the average, arandomly generatedSN P system withR
rules will contain aboutR2 firing rules andR

2 forgetting rules, and thus we will need
R
2 [1 + lg C] + R

2 [4 + lg C + lg D] = R [1 + lg C] + R
2 [3 + lg D] bits to encode them.

A simple encoding of an SN P systemΠ(m, R, C, D) of degreem, havingR rules
that consume at mostC spikes each, and whose delays are less than or equal toD, is
a sequence ofm blocks — one for each neuron — followed by them2 − m bits that
encode the structure of the synapse graph. For each neuron, we have to specify the list
of its rules; since each neuron may have a different number ofrules, we could put an
additional bit in front of the encoding of each rule, to signal whether such a rule is the
last in the description of the neuron. However, in order to beable to encode also the
empty list of rules, we will put a bit equal to1 in front of each rule, and a0 at the end of
the list. In this way, when decoding, the presence of a1 means that the next bits encode
a rule of the neuron, whereas a0 means that the next bits encode a different neuron.
Using this encodingC, the description size of arandomly chosen(and thus, possibly,
non–universal) systemΠ is:

dsC(Π) =
R

2
[2 + lg C] +

R

2
[5 + lg C + lg D] + R + m2 −m =

=
9R

2
+ R lg C +

R

2
lg D + m2 −m

As we did with register machines, in order to determine an upper bound to the descrip-
tion sizeds(SNP) of the entire class of SN P systems we now turn our attention to
universalsystems. In [18], asmalluniversal SN P system is obtained by simulating a
slightly modified version of the small universal deterministic register machine described
in section 3.1. The modification is needed for a technical reason due to the behavior of
SN P systems (see [18] for details); the modified version of the register machine has9
registers,24 istructions and25 labels. Each instruction is simulated through an appro-
priate subsystem; moreover, anINPUT module is needed to read the input spike train
from the environment and initialize the simulation, and anOUTPUT module is needed
to produce the output spike train if and when the computationof the simulated regis-
ter machine halts. As a result, the universal SN P system is composed of91 neurons,
which are subsequently reduced to84 by simulating in a different way one occurrence
of two consecutiveINCs and two occurrences of anINC followed by aDEC. These
84 neurons are used as follows:9 neurons for the registers,22 neurons for the labels,
18 auxiliary neurons for the9 INC instructions,18 auxiliary neurons for the9 DEC
instructions,2 auxiliary neurons for the simulation of two consecutiveINC instruc-
tions,3 · 2 = 6 auxiliary neurons for the two simulations of consecutiveINC −DEC
instructions,7 neurons for theINPUT module, and finally2 neurons for theOUTPUT

How Redundant is your Universal Computation Device? 279

module. Considering all these neurons, the system containsa total numberR = 117 of
rules.

For such a system it is uncomfortable to make a detailed analysis of the encoded string
as we did for register machines, and thus we will just determine its length. Let us first
note that in such a system we haveD = 1 andC = 3, and thus1 and2 bits will suffice
to represent any delay and any number of consumed spikes, respectively. The9 neurons
that correspond to the registers contain two firing rules each, and thus require15 bits
each, for a total of135 bits. The22 neurons associated with the labels contain each
one firing and one forgetting rule, for a total of11 bits that, multiplied by22, makes
242 bits. Each auxiliary neuron involved in the simulation of the 9 INC instructions
contains one firing rule, and thus requires8 bits to be described; all the18 neurons
require144 bits. The same argument applies to the18 auxiliary neurons involved in the
simulation of the9 DEC instructions, thus adding further144 bits. The two auxiliary
neurons used to simulate two consecutiveINC instructions also contain one firing rule
each, thus contributing with16 bits. The same applies to the6 auxiliary neurons used to
simulate (two instances of) anINC followed by aDEC, thus adding48 bits, as well as
to the7 neurons that are used in theINPUT module (56 bits) and the2 auxiliary neurons
of theOUTPUT module (16 bits).

All considered, we need801 bits to describe the rules contained in the neurons. To these
we must add them2 −m = 6972 bits needed to describe the structure of the synapse
graph. We thus obtain a total of7773 bits to encode the universal standard SN P system
presented in [18]. This quantity is an upper bound todsC(Π), the description size of the
system under the proposed encoding, which in turn is an upperbound tods(SNP), the
description complexity of the class of SN P systems. Tighterbounds can be obtained by
explicitly computing the encoding ofΠ and then compressing it by means of a lossless
compressor.

By assumingds(DRM) = 263 andds(SNP) = 7773, an approximated value of the
redundancyof spiking neural P systems with respect to deterministic register machines,
is:

RDRM(SNP) =
ds(SNP)

ds(DRM)
=

7773

263
≈ 29.56

On the other hand, by assumingds(DRM) = 258 (that results from the computation
of the entropy of the string that encodes the universal deterministic register machine
depicted in Figure 3.1) the redundancy becomesRDRM(SNP) = ds(SNP)

ds(DRM) = 7773
258 ≈

30.13. These results suggest that the description of a universal SN P system is at least
29 or 30 times more verbose with respect to the description of a universal determin-
istic register machine. This number can certainly be lowered by computingds(SNP)
from the entropy of the bit string used to encodeΠ. We are currently performing these
computations; the results will be exposed during the workshop.

280 How Redundant is your Universal Computation Device?

In [18] it is also shown that by allowing firing rules of the extended type it is possible
to build a universal SN P system by using only49 neurons. However this time many
neurons have7 rules instead of2, and to describe every extended ruleE/ac → ap; d we
need also some bits to specify the value ofp, that does not occur in standard rules. As a
result, there may be some doubts about what, among the two systems, is smaller. To find
out the winner of this competition, let us compute the description size of the extended
SN P system. As reported in [18], this time the system is able to simulate the universal
register machine which is composed ofn = 8 registers andm = 23 instructions. The
rules contain12 different regular expressions, do not contain delays, and the maximum
number of spikes produced or consumed is13. Thus we will need4 bits to specify a
regular expression,0 bits to represent the delays, and4 bits to represent each number of
produced/consumed spikes. The49 neurons are used as follows:8 neurons for the reg-
isters,22 neurons for the labels,13 for theDEC instructions,5 for the INPUT module,
and1 for the OUTPUT module. Each extended firing rule requires1 + 4 + 4 + 4 = 13
bits to be encoded, whereas a forgetting rule requires1 + 4 = 5 bits. Recall that each
rule is preceded by a1 in a list of rules, while the list itself is terminated with a0. Each
of the8 neurons used for the registers contains2 firing rules (2 · 13 + 3 = 29 bits), for a
total of232 bits. Each of the22 neurons used for the labels contains3 firing rules and4
forgetting rules (67 bits), for a total of1474 bits. Each of the13 neurons which are used
in the simulation of theDEC instructions contains1 firing rule (15 bits), for a total of
195 bits. Each of the5 neurons used in theINPUT module also contains1 firing rule (to-
tal: 75 bits), whereas the neuron used in theOUTPUTmodule contains2 firing rules and
1 forgetting rule (35 bits). To all these bits we must add the492−49 = 2352 bits which
are needed to encode the synapse graph. All considered, we obtain4361 bits, which is
well less than the7773 bits obtained with the first universal SN P system. Hence thisis a
tighter upper bound tods(SNP) and, assumingds(DRM) = 263 or ds(DRM) = 258,
we obtain

RDRM(SNP) =
4361

263
≈ 16.58 and RDRM(SNP) =

4361

258
≈ 16.90

respectively. Also in this case, tighter bounds can be obtained by explicitly computing
the bit string that encodes the universal extended SN P system and then compressing
it using a lossless compressor. We are currently performingthese computations; the
results will be exposed during the workshop.

3.6 UREM P systems Let UREM denote the class of UREM P systems. As proved
in [6], in order to reach computational completeness we can restrict our attention to
deterministicsystems in which the skin membrane contains one elementary membrane
for each register of the (possibly universal) simulated deterministic register machine.
This means getting rid of the membrane structure, saving a lot of bits while describing
the system. Similarly, we can restrict our attention to UREMP systems in which the
amounts∆e of energy that occur in each rule are taken from the set{−1, 0, 1}. This
means that for each rule2 bits will suffice to encode the actual value of∆e.

How Redundant is your Universal Computation Device? 281

Under these assumptions, in order to encode a particular systemΠ ∈ UREM we have to
specify as parameters the numbern of elementary membranes contained into the skin,
the numberm of symbols contained into the alphabet, and the numberR of rules that
occur in the system. Then, for each membrane we have to specify the list of its rules.
Just like it happens with SN P systems, in general every membrane will have a different
number of rules, and thus we will prepend the description of each rule by a bit equal to
1, and we will conclude each list of rules with a0. To encode each rule(opi : a, ∆e, b)
we need1 bit to specify whetherop = in or op = out, 2 · lg m bits to specify the
alphabet symbolsa andb, and2 bits to express the value of∆e.

0 : (in1 : p0, 0, p̃0), (out1 : p̃0,−1, p1), (out1 : p̃0, 0, p2)

1 : (in7 : p1, 1, p̃1), (out7 : p̃1, 0, p0)

2 : (in6 : p2, 1, p̃2), (out6 : p̃2, 0, p3)

3 : (in5 : p3, 0, p̃3), (out5 : p̃3,−1, p2), (out5 : p̃3, 0, p4)

4 : (in6 : p4, 0, p̃4), (out6 : p̃4,−1, p5), (out6 : p̃4, 0, p3)

5 : (in5 : p5, 1, p̃5), (out5 : p̃5, 0, p6)

6 : (in7 : p6, 0, p̃6), (out7 : p̃6,−1, p7), (out7 : p̃6, 0, p8)

7 : (in1 : p7, 1, p̃7), (out1 : p̃7, 0, p4)

8 : (in6 : p8, 0, p̃8), (out6 : p̃8,−1, p9), (out6 : p̃8, 0, p0)

9 : (in6 : p9, 1, p̃9), (out6 : p̃9, 0, p10)

10 : (in4 : p10, 0, p̃10), (out4 : p̃10,−1, p0), (out4 : p̃10, 0, p10)

11 : (in5 : p11, 0, p̃11), (out5 : p̃11,−1, p12), (out5 : p̃11), 0, p13)

12 : (in5 : p12, 0, p̃12), (out5 : p̃12,−1, p14), (out5 : p̃12), 0, p15)

13 : (in2 : p13, 0, p̃13), (out2 : p̃13,−1, p18), (out2 : p̃13), 0, p19)

14 : (in5 : p14, 0, p̃14), (out5 : p̃14,−1, p16), (out5 : p̃14), 0, p17)

15 : (in3 : p13, 0, p̃13), (out3 : p̃13,−1, p18), (out3 : p̃13), 0, p20)

16 : (in4 : p16, 1, p̃16), (out4 : p̃16, 0, p11)

17 : (in2 : p17, 1, p̃17), (out2 : p̃17, 0, p21)

18 : (in4 : p18, 0, p̃18), (out4 : p̃18,−1, p0), (out4 : p̃18), 0, p22)

19 : (in0 : p19, 0, p̃19), (out0 : p̃19,−1, p0), (out3 : p̃19), 0, p18)

20 : (in0 : p20, 1, p̃20), (out0 : p̃20, 0, p0)

21 : (in3 : p21, 1, p̃21), (out3 : p̃21, 0, p18)

Fig. 3.2 A small universal deterministic UREM P system. In each row, the number on the left
refers to the label of the simulated instruction of the register machine depicted in Figure 3.1

282 How Redundant is your Universal Computation Device?

A simple encoding of a UREM P systemΠ(n, m, R) containingn elementary mem-
branes into the skin, andR rules that operate onm symbols of the alphabet, is com-
posed ofn + 1 blocks, one for each membrane. Each block encodes the sequence of
rules associated with the corresponding membrane, listingthe rules as described above.
Each rule requires4+2 lgm bits to be encoded (one bit is used to indicate that we have
not yet reached the end of the list of rules), for a total of2R [2 + lg m] bits. One bit is
needed to terminate each of then + 1 lists, and thus the description size of the whole
system under the encodingC just proposed is:

dsC(Π) = 2R [2 + lg m] + n + 1

A small universal UREM P system (here proposed for the first time) can be obtained by
simulating the small universal deterministic register machine described in section 3.1.
Such a small UREM P system containsn = 8 elementary membranes. As recalled in
section 2.3 (see [6] for details) we need the objectspj andp̃j , for all j ∈ {0, 1, . . . , 21},
to simulate the instructions of the register machine, as well as the objectp22 to simulate
the jump to the non-existent instruction number22 (to halt the computation), for a total
of m = 45 alphabet symbols. EachINC instruction of the register machine requires
2 rules to be simulated, whereas eachDEC instruction requires3 rules, for a total of
R = 57 rules, depicted in Figure 3.2.

The skin membrane does not contain any rule, and thus the firstblock of the encoding
of Π is 0. The elementary membrane that simulates register0 contains the five rules that
correspond to theINC (line 19 in Figure 3.2) and to theDEC (line 20) instructions
that affect the contents of register0. Sincen = 8, we will need3 bits to encode a register
number; similarly, to encode an alphabet symbol we will needlg m = lg 45 = 6 bits.
The bit string that encodes membrane0 is thus:

1 0︸︷︷︸
in

010011︸ ︷︷ ︸
p19

00︸︷︷︸
0

110011︸ ︷︷ ︸
ep19

1 1︸︷︷︸
out

110011︸ ︷︷ ︸
ep19

11︸︷︷︸
−1

000000︸ ︷︷ ︸
p0

1 1︸︷︷︸
out

110011︸ ︷︷ ︸
p19

00︸︷︷︸
0

010010︸ ︷︷ ︸
p18

1 0︸︷︷︸
in

010100︸ ︷︷ ︸
p20

01︸︷︷︸
1

110100︸ ︷︷ ︸
ep20

1 1︸︷︷︸
out

110100︸ ︷︷ ︸
ep20

00︸︷︷︸
0

000000︸ ︷︷ ︸
p0

0

where we have encodedin as0, out as1, ∆e = 0 as00, ∆e = 1 as01, ∆e = −1
as11, pk as the5-bit binary encoding ofk ∈ {0, 1, . . . , 22} with an additional leading
0, andp̃k as the5-bit binary encoding ofk ∈ {0, 1, . . . , 21} with an additional leading
1. Operating in a similar way for all the elementary membranesof Π, we obtain the
following binary string (the spaces denote a separation between consecutive rules; they
are put here to help the reader, but are not necessary to decode the string):

How Redundant is your Universal Computation Device? 283

(Skin membrane)

0

(Membrane 0)

1 001001100110011 1 111001111000000 1 111001100010010

1 001010001110100 1 111010000000000 0

(Membrane 1)

1 000000000100000 1 110000011000001 1 110000000000010

1 000011101100111 1 110011100000100 0

(Membrane 2)

1 000110100101101 1 110110111010010 1 110110100010011

1 001000101110001 1 111000100010101 0

(Membrane 3)

1 000110100101101 1 110110111010010 1 110110100010100

1 001010101110101 1 111010100010010 0

(Membrane 4)

1 000101000101010 1 110101011000000 1 110101000001011

1 101000001110000 1 111000000001011 1 001001000110010

1 111001011000000 1 111001000010110 0

(Membrane 5)

1 000001100100011 1 110001111000010 1 110001100000100

1 000010101100101 1 110010100000110 1 000101100101011

1 110101111001100 1 110101100001101 1 000110000101100

1 110110011001110 1 110110000001111 1 000111000101110

1 110111011010000 1 110111000010001 0

(Membrane 6)

1 000001001100010 1 110001000000011 1 000010000100100

1 110010011000101 1 110010000000011 1 000100000101000

1 110100011001001 1 110100000000000 1 000100101101001

1 110100100001010 0

(Membrane 7)

1 000000101100001 1 110000100000000 1 000011000100110

1 110011011000111 1 110011000001000 0

We can thus conclude thatdsC(Π) = 921, whereC denotes our encoding.

284 How Redundant is your Universal Computation Device?

Also in the case of UREM P systems we can ask how many bits we would save by
compressing the above bit string. If we look at such a string we can see that it contains
516 zeros and405 ones. Hence the probability that a0 occurs in any given position is
p0 = 516

921 , whereas the probability that a1 occurs isp1 = 405
921 . The entropy of the above

sequence is thusH(Π) = −p0 log2 p0 − p1 log2 p1 ≈ 0.990, and we can conclude that
a compressed string produced by an optimal entropy-based compressor, whose length is
approximately equal to the length of the uncompressed string times the entropy, would
contain⌈911.79⌉ = 912 bits. Such a quantity is an upper bound tods(UREM), the
theoretical description size complexity of the class of UREM P systems.

By assumingds(DRM) = 263 andds(UREM) = 921, and approximated value of the
redundancyof UREM P systems with respect to deterministic register machines is:

RDRM(UREM) =
ds(UREM)

ds(DRM)
=

921

263
≈ 3.50

On the other hand, by assumingds(DRM) = 258 andds(UREM) = 912 (that re-
sult by considering the entropies of the corresponding encoded strings) the redundancy
becomesRDRM(UREM) = 912

258 ≈ 3.53. These results suggest that the description
of a universal UREM P system is at least3.5 times more verbose with respect to the
description of a universal deterministic register machine.

4 Conclusions

Trying to find a common measure for the size of different computation devices, we
have introduced thedescription sizeof a deviceM as the length of the binary string
produced by a “reasonable” encoding ofM . For three classes of computation devices
(deterministic register machines, SN P systems and UREM P systems) we have com-
puted the description size of randomly chosen devices, as well as of a universal device
taken from each class. In this way we have observed that the smallest universal SN P
system currently known has a description which is about16.58 times as verbose as the
the description of the smallest deterministic register machine (currently known), while
the smallest universal deterministic UREM P system (here described for the first time)
is only about3.5 times more verbose with respect to the register machine. Indeed, an in-
teresting question that naturally arises after these calculations is: What is the minimum
theoretical description size that can be obtained by considering all possible universal
computing devices? In other words: What is the minimum number of bits which are
necessary to describe the structure of a universal computing device?

Making a bit of self-criticism, we are aware of some weak points in our results. First of
all, since we are speaking about Turing computable functions we should also consider
the many small universal Turing machines which have been defined in the literature.
Such a work is currently in progress, as well as the comparison with the description
size complexities of small universal tissue and antiport P systems. Moreover, we should

How Redundant is your Universal Computation Device? 285

not give for free that the smallest universal computation devices defined in the literature
automatically produce the smallest possible description sizes: for example, minimizing
the number of neurons in SN P systems does not automatically produce the shortest
among all possible encoded bit strings, since the encoding takes into account all the
parameters (number of rules, number of consumed spikes, etc.) that may affect the size
of the system. Finally, smarter encoding functions could produce shorter strings than
those we have presented in this paper, thus showing tighter bounds to the theoretical
values of description size complexities. Improving our results under all these points of
view is a direction of research of a clear interest. Speakingabout the encoding functions,
we note that on one hand we required that the encoding and decoding processes should
be as simple as possible: their description should require only a finite number of bits.
On the other hand, we did not add (nor specify better) such bits to the description size of
our computing devices. Whether this is correct or not is questionable, but let us note that
also representing the decoding algorithm as a string of bitswould require a decoding
process, and so on in an endless sequence of encodings and decodings.

Acknowledgments. The work of the authors was supported by MiUR under the project
“Azioni Integrate Italia-Spagna - Theory and Practice of Membrane Computing” (Acción
Integrada Hispano-Italiana HI 2005-0194), and by project “Models of natural compu-
ting and applications” — FIAR 2007 — University Milano–Bicocca.

Bibliography

[1] J.L. Balcázar, J. Dı́az, J. Gabarró.Structural Complexity. Voll. I and II, Springer-
Verlag, Berlin, 1988–1990.

[2] H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez. Spiking Neural P Systems
with Extended Rules. In M.A. Gutiérrez–Naranjo, Gh. Păun, A. Riscos–Núñez,
F.J. Romero–Campero (eds.),Fourth Brainstorming Week on Membrane Compu-
ting, RGCN Report 02/2006, Sevilla University, Fénix Editora,Vol. I, 241–265.

[3] A. Church: An Unsolvable Problem of Elementary Number Theory. American
Journal of Mathematics58:354–363, 1936.

[4] M. Cook: Universality in Elementary Cellular Automata.Complex Systems, 15:1–
40, 2004.

[5] E. Csuhaj–Varjú, M. Margenstern, G. Vaszil, S. Verlan:On Small Universal An-
tiport P Systems.Theoretical Computer Science, 372(2–3):152–164, 2007.

[6] R. Freund, A. Leporati, M. Oswald, C. Zandron: Sequential P Systems with Unit
Rules and Energy Assigned to Membranes. InProceedings of Machines, Compu-
tations and Universality, MCU 2004, LNCS 3354, Springer-Verlag, Berlin, 2005,
pp. 200–210.

[7] R. Freund, M. Oswald: GP Systems with Forbidding Context. Fundamenta Infor-
maticae, 49(1–3):81–102, 2002.

[8] R. Freund, M. Oswald: Small Universal Antiport P Systemsand Universal Multi-
set Grammars. In M.A. Gutiérrez-Naranjo, Gh. Păun, A. Riscos-Nnez, F.J. Romero-

286 How Redundant is your Universal Computation Device?

Campero (eds.),Proceedings of the4th Brainstorming Week on Membrane Compu-
ting, Sevilla, January 30–February 3, 2006, vol. II, RGNC Report03/2006, Fénix
Editora, Sevilla, 2006, pp. 51–64.

[9] R. Freund, Gh. Păun: On the Number of Non-terminals in Graph-controlled, Pro-
grammed, and Matrix Grammars. In M. Margenstern, Y. Rogozhin (eds.),Proc.
Conf. Universal Machines and Computations, LNCS 2055, Springer–Verlag, Berlin,
2001, pp. 214–225.

[10] R. Freund, Gh. Păun: From Regulated Rewriting to Computing with Membranes:
Collapsing Hierarchies.Theoretical Computer Science, 312:143–188, 2004.

[11] M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems.Fundamenta In-
formaticae, 71(2-3):279–308, 2006.

[12] M. Ionescu, A. Păun, Gh. Păun, M.J. Pérez-Jiménez:Computing with spiking neu-
ral P systems: traces and small universal systems. In C. Mao,T. Yokomori (eds.),
DNA Computing,12th International Meeting on DNA Computing, DNA12, Re-
vised Selected Papers, LNCS 4287, Springer-Verlag, Berlin, 2006, pp. 1–16.

[13] S. Kleene: A Theory of Positive Integers in Formal Logic. American Journal of
Mathematics, 57, 1935, pp. 153-173 and 219-244.

[14] I. Korec: Small Universal Register Machines.Theoretical Computer Science, 168:
267–301, 1996.

[15] M. Kudlek: Small Deterministic Turing Machines.Theoretical Computer Science,
168:241–255, 1996.

[16] M.L. Minsky: Size and Structure of Universal Turing Machines Using Tag Sys-
tems. InRecursive Function Theory, Symp. in Pure Mathematics, 5:229–238, Amer.
Mathematical Soc., Provelence, RS, 1962.

[17] M.L. Minsky: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New
Jersey, 1967.

[18] A. Păun, Gh. Păun: Small Universal Spiking Neural P Systems.BioSystems, 90:48–
60, 2007.

[19] Gh. Păun: Computing with membranes.Journal of Computer and System Sciences,
61:108–143, 2000. See also Turku Centre for Computer Science — TUCS Report
No. 208, 1998.

[20] Gh. Păun:Membrane Computing. An Introduction. Springer–Verlag, Berlin, 2002.
[21] E. Post: Formal Reductions of the Combinatorial Decision Problem.American

Journal of Mathematics, 65(2):197–215, 1943.
[22] Y. Rogozhin: Seven Universal Turing Machines.Math. Issled, 69:76–90, 1982.
[23] Y. Rogozhin: A Universal Turing Machine with 10 States and 3 Symbols.Izv.

Akad. Nauk. Respub. Moldova Mat., 4:80–82 and 95, 1992.
[24] Y. Rogozhin: Small Universal Turing Machines.Theoretical Computer Science,

168:215–240, 1996.
[25] Y. Rogozhin, S. Verlan: On the Rule Complexity of Universal Tissue P Systems.

In R. Freund, Gh. Păun, G. Rozenberg, A. Salomaa (eds.),Membrane Compu-
ting, International Workshop, WMC 6, Selected and Invited Papers, LNCS 3850,
Springer-Verlag, Berlin, 2005, pp. 356–363.

[26] C.E. Shannon: A Universal Turing Machine with Two Internal States.Automata

How Redundant is your Universal Computation Device? 287

Studies, Ann. Math. Stud., 34:157–165, Princeton University Press, Princeton, NJ,
1956.

[27] S. Wolfram:A New Kind of Science, Wolfram Media, Champaign, IL, 2002.
[28] Wolfram Research and S. Wolfram: The Wolfram 2,3 TuringMachine Research

Prize. http://www.wolframscience.com/prizes/tm23/
[29] The P systems Web page: http://ppage.psystems.eu/

Enumerating Membrane Structures

———————————————
Vincenzo Manca

Verona University, Computer Science Department,
Strada LeGrazie 15, 37134 Verona, Italy.
vincenzo.manca@univr.it

A recurrent formula for enumerating membrane structures isgiven. It is de-
duced by elementary combinatorial methods, by providing a simplification with
respect to a classical formula for the enumeration of trees,which is based on
the analytical method of generating functions.

1 Introduction

The computation of the number of different membrane structures constituted byn mem-
branes was considered at early beginning of Membrane Computing [6], in a preliminary
draft of [7]. It is a well known combinatorial problem equivalent to the enumeration of
unlabeled unordered trees [4]. Therefore, it is related to Catalan numbers and to a lot
of combinatorial problems [2] which recently were proved tobe investigated even by
Greek mathematicians (e. g., Hypparcus’ problem and its modern variant known as
Schröder’s problem [8]).

For the enumeration of (this kind of) trees, no exact analytical formula is available, but
a recurrent formula, based on integer partitions, was givenin [5], which was deduced
by means of generating functions. In the same paper also a complex asymptotic formula
is presented.

In this note, we provide a new recurrent formula related to a simple combinatorial anal-
ysis of membrane structures.

The setM of finite membrane structures can be defined by induction. Letus consider
finite multisets as an extension of finite sets, denoted by{a, a, b, c}, where elements can
occur more than one time. A membraneskin wrappingof a finite multisetS is an oper-
ation which provides a structure, denoted by[S], where the elements ofS arewrapped
in a common membrane. We remark that braces denote multiset theoretic collections,
while brackets denote membrane (spatial-topological) inclusions. For a mathematical
definition of membrane structures, it is useful to distinguish these two notions and to
use both of them. Let us start from the multiset{[]} including only one occurrence of
theelementary membrane[] (wrapping the empty multiset). The setM of membrane

290 Enumerating Membrane Structures

Fig. 1.1 A representation of the membrane structures with four membranes (braces are repre-
sented by rectangles and brackets by ovals).

structures is generated by induction by means of the multiset union + (summing the
element occurrences of two multisets), which is a binary commutative and associative
operation, and by means of theskin wrapping operation. The elements occurring in a
multisetS of M are called thecomponentsof S.

{[]} ∈ M Base step

S, S1, S2 ∈ M =⇒ {[S]}, S1 + S2 ∈M Inductive step

For example,{[]}+ {[]} = {[], []} and[{[], []}] = [[], []] ∈M.

2 Cells, Colonies, and Neo-colonies

Givenn elements, the number of multisets ofk elements over then elements, according
to [1], is given by:

Enumerating Membrane Structures 291

(
n + k − 1

k

)
(40)

By using formula (40), the following recurrent formula is given in Knuth’s book [4]
(pag. 386), which provides the numberP (n) of membrane structures of type[S] with
n membranes (N is the set of natural numbers,n > 0, P (0) = 1, j, n1, n2, . . . ,
nj , k1, k2, . . . , kj ∈ N):

P (n) =
∑

k1·n1+k2·n2,...kj ·nj=n

∏

i=1,..., j

(
M(ni) + ki − 1

ki

)
(41)

Unfortunately, formula (41) is not manageable for an effective computation, because
it is based on integer partitions, which grow exponentially(according to Ramanujan’s
asympthotic formula [3]) making the evaluation of the sum informula (41) very com-
plex. For this reason, we adopt a different enumeration strategy, by considering the fol-
lowing partition of membrane structures: i)Cells, ii) Neo-colonies, and iii) Colonies.
Cells are structure of type{[S]} whereS ∈ M, andS is not empty. Neo-colonies are
multisets of typeS + {[]}, with S ∈ M, that is, multisets having an elementary mem-
brane as their component. Colonies are structures different from cells and neo-colonies,
that is, they are not singleton multisets and do not have components which are elemen-
tary membranes. In Fig. 1.1 structures on the left side are cells, structures in the middle
are neo-colonies, and the structure on the right is a colony.Cells are easily proved
to be equivalent to rooted unlabeled unordered trees, whilecolonies and neo-colonies
represent unlabeled unordered forests. We denote byM(n) the numbers of membrane
structures havingn membranes (pairs of matching brackets), and byN(n), P (n), C(n),
the number of Neo-colonies, Cells, and Colonies, respectively, havingn membranes. It
easy to realize that a membrane structure withn membranes inside a further external
membrane provides a cell withn + 1 membranes, while united with the multiset{[]}
provides a neo-colony. The following lemmas are simple consequences of this partition
of membrane structures.

Lemma 1 For n > 0 the following equations hold:

M(n) = N(n + 1) = P (n + 1).

Lemma 2 For n > 1

M(n + 1) = 2M(n) + C(n + 1).

292 Enumerating Membrane Structures

Lemma 3 Let Mi(n) denote the number of colonies havingn membranes and exactly
i components, then forn > 1

C(n) =
∑

i=2,⌊n/2⌋

Mi(n).

Proof . At most⌊n/2⌋ components can be present in a colony withn membranes.

Lemma 4 For n > 2
C(n + 1) ≤M(n).

Proof . Removing an external membrane, in a component of a colony with n + 1 mem-
branes, provides a membrane structure withn membranes. Therefore colonies withn+1
membranes are at mostM(n).

Lemma 5 For n > 2
C(n + 1) ≥M(n− 1)− 1.

Proof . Some colonies withn+1 membranes come from the neo-colonies withn mem-
branes, which areM(n− 1), by wrapping all their elementary membranes in a unique
membrane. This cannot be done in the case of a neo-colony constituted only by elemen-
tary membranes. Therefore,C(n + 1) ≥M(n− 1)− 1.

Putting together the two previous lemmas with Lemma 2 we get the following lemma.

Lemma 6 For n > 2
2M(n) ≤M(n + 1) ≤ 3M(n).

2n < M(n + 1) < 3n

According to the previous lemmas we see that in the numberM(n+1) the part2M(n)
refers to cells plus neo-colonies. Therefore, ifM(n) is known, the real problem for the
computation ofM(n +1) is the evaluation ofM(n +1)− 2M(n) = C(n +1), that is,
the number of colonies withn + 1 membranes.

Enumerating Membrane Structures 293

In the case of 1, 2, and 3 membranes we haveM(0) = 1, M(1) = 1, M(2) = 2,
M(3) = 4, as it is indicated in the following schema (external bracesare not indicated).

1 []

2 [], [] [[]]

3 [], [], [] [[[]]] [], [[]] [[], []]

From Lemma 6 we evaluate immediatelyM(4) = 2M(3) + 1 = 9. In fact,M2(4) =
1, because there is only a colony with 4 membranes:[[]], [[]]. Analogously,
M(5) = 2M(4) + 2 = 18 + 2 = 20, because there are two colonies with 5 mem-
branes:[[]], [[], []], and[[]], [[[]]]. The sequence fromM(1) up toM(12)
(sequence A000081 of The On-Line Encyclopedia of Integer Sequences [8]) provides
the following values:

n 1 2 3 4 5 6 7 8 9 10 11 12

M(n) 1 2 4 9 20 48 115 286 719 1842 4766 12486

Let N∗ be the set of finite sequences over the setN of natural numbers. IfX ∈ N∗, and
j ∈ N we denote by|X | the length ofX , and byX(j) the number which occurs inX at
positionj. Let Πn,k be the set of partitions of the the integern as sum ofk summands
(simple recurrent formulae for generating and counting thecardinality of this set are
available). A partitionµ of integers is a multiset of integers, let us denote byµ(j) the
number of occurrences of the integerj in µ.

The following operation associates, for anyi ∈ N, a natural number to any sequence
X ∈ N∗. ⊗

iX =
∑

µ∈Π|X|+1−i,i

∏

j∈µ

(
X(j) + µ(j)− 1

µ(j)

)
(42)

For i, j ∈ N, let M(1, .., j) denote the sequence(M(1), . . . , M(j)), then the main
lemma follows.

Lemma 7 For n > 2

C(n + 1) =
∑

i=2,⌊(n+1)/2⌋

⊗
iM(1, .., n).

294 Enumerating Membrane Structures

Proof Outline. Colonies with n+1 membranes may have 2, 3, . . . , but at most a number
⌊(n + 1)/2⌋ of components. If we fix a numberi of components, theni membranes, of
then + 1 membranes, must be used for the skins of thesei components, therefore the
remainingn+1− i are partitioned among these components in all the possible ways. In
colonies with 2 componentsn + 1− 2 membranes can be distributed in 2 components.
In colonies with 3 componentsn + 1 − 3 membranes can be distributed in 3 compo-
nents, and so on, up ton + 1 − ⌊(n + 1)/2⌋. In order to compute the number of all
possible membrane arrangements, each partition ofµ of n + 1 into i summands must
be “read”, according to the formula

∏
j∈µ

(M(j)+µ(j)−1
µ(j)

)
, on the sequenceM(1, .., n)

of membrane structure numbers. If a numbernj of membranes is assigned to the com-
ponentj, with

∑
j=1,i nj = n + 1 − i, and all thenj summands are different, we

easily find
∏

j=1,i M(nj) different membrane structures. However, this simple formula
cannot be applied if two, or more, summands are equal. For example, if a partition has
three parts, with two equal parts, sayn + 1 − 3 = p + p + q, then in a corresponding
colony of three componentsq membranes can be arranged inM(q) ways in a compo-
nent, andp membranes can be arranged inM(p) ways in the other two components.
However, in the two components withp membranes the repetitions of the same config-
urations must be avoided. For this reason, the product

∏
j∈µ

(M(j)+µ(j)−1
µ(j)

)
is used. In

fact, whenµ(j) = 1, then this formula provides the valueM(j), but, whenµ(j) > 1,
the number of different multisets ofM(j) elements with multiplicityµ(j) is provided.
In conclusion, the number of all possible colonies is the sumof

⊗
iM(1, . . . , n) for all

possible numberi of components.

This lemma suggests an algorithm for computingC(n + 1). From Lemmas 2, 3, and
7 the final proposition follows. The application of the formula of Lemma 7, tested for
n = 0, . . . , 11, provided the same values, previously given, of the sequence A000081.

Proposition 1 For n > 2

M(n + 1) = 2M(n) +
∑

i=2,⌊(n+1)/2⌋

⊗
iM(1, .., n).

As an example we provide the computation ofC(11). According to lemma 7 the value
C(11) is given by:

C(11) =
∑

i=2,5

⊗
iM(1, . . . , 10)

The integer partitions of 9 in two summands yield the following set:

Enumerating Membrane Structures 295

Π9,2 = {{8, 1}, {7, 2}, {6, 3}, {5, 4}}

therefore:

⊗
2M(1, . . . , 10) =

∑

µ∈Π9,2

∏

j∈µ

(
M(j) + µ(j)− 1

µ(j)

)
=

[(
286+1−1

1

)(
1+1−1

1

)]
+
[(

115+1−1
1

)(
2+1−1

1

)]
+
[(

48+1−1
1

)(
4+1−1

1

)]
+
[(

20+1−1
1

)(
9+1−1

1

)]
=

286 + 115 · 2 + 48 · 4 + 20 · 9 = 888.

The integer partitions of 8 in three summands yield the following set:

Π8,3 = {{6, 1, 1}, {5, 2, 1}, {4, 3, 1}, {4, 2, 2}, {3, 3, 2}}

therefore:

⊗
3M(1, . . . , 10) =

∑

µ∈Π8,3

∏

j∈µ

(
M(j) + µ(j)− 1

µ(j)

)

[(
48+1−1

1

)(
1+2−1

2

)]
+
[(

20+1−1
1

)(
2+1−1

1

)(
1+1−1

1

)]
+
[(

9+1−1
1

)(
4+1−1

1

)(
1+1−1

1

)]
+[(

9+1−1
1

)(
2+2−1

2

)]
+
[(

4+2−1
2

)(
2+1−1

1

)]
= 48 + 20 · 2 + 9 · 4 + 9 · 3 + 10 · 2 = 171.

The integer partitions of 7 in four summands yield the following set:

Π7,4 = {{4, 1, 1, 1}, {3, 2, 1, 1}, {2, 2, 2, 1}}

therefore:

⊗
4M(1, . . . , 10) =

∑

µ∈Π7,4

∏

j∈µ

(
M(j) + µ(j)− 1

µ(j)

)
=

[(
9+1−1

1

)(
1+3−1

3

)]
+
[(

4+1−1
1

)(
2+1−1

1

)(
1+2−1

2

)]
+
[(

2+3−1
3

)(
1+1−1

1

)]
=

296 Enumerating Membrane Structures

9 + 4 · 2 + 4 = 21.

The integer partitions of 6 in five summands yield the following set:

Π6,5 = {{2, 1, 1, 1, 1}}

therefore:

⊗
5M(1, . . . , 10) =

∑

µ∈Π6,5

∏

j∈µ

(
M(j) + µ(j)− 1

µ(j)

)
=

[(
2+1−1

1

)(
1+4−1

4

)]
= 2.

In conclusion,C(11) = 888 + 171 + 21 + 2 = 1082, therefore:

M(11) = 2M(10) + 1082 = 4766.

Bibliography

[1] M. Aigner. Discrete Mathematics.American Mathematical Society, 2007.
[2] A. Cayley. On the analytical forms called trees, with application to the theory of

chemical combinations.Mathematical Papers, Vol. 9, 427-460, 1875.
[3] J H.. Conway and R. K. Guy. The Book of Numbers.Springer-Verlag, 1996.
[4] D. Knuth. The Art of Computer Programming, Vol. 1, Fundamental Algorithms.

Addison Wesley,1968.
[5] R. Otter. The Number of Trees.The Annals of Mathematics, 2nd Ser. Vol. 49, N.

3, 583-599,1948.
[6] Gh. Păun. Personal Communication, October 1998.
[7] G. Păun. Computing with membranes.J. Comput. System Sci., 61(1): 108–143,

2000.
[8] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences.Notices of The

American Mathematical SocietyVol. 59, N. 8, 912-915, 2003.

Toward an MP model of Non Photochemical
Quenching

———————————————
Vincenzo Manca1, Roberto Pagliarini1, Simone Zorzan2

1Verona University, Computer Science Department,
Strada Le Grazie 15, 37134 Verona, Italy
{vincenzo.manca, roberto.pagliarini }@univr.it

2Verona University, Biotechnological Department,
Strada Le Grazie 15, 37134 Verona, Italy
zorzan@sci.univr.it

In this paper we apply the formalism of Metabolic P Systems for modelling
an important phenomenon of photochemical organisms, whichdetermines the
plant accommodation to the environmental light. By using some experimental
data of this phenomenon, we determine an MP system which discovers, in a
specific simplified case, the regulation mechanism underling the Non Photo-
chemical Quenching phenomenon and reproduces, with a good approximation,
the observed behaviour of the natural system.

1 Introduction

Photosynthetic organisms have a controversial relationship with the light. They need to
maximize the amount of absorbed light but avoid the damages that follow from an ex-
cess of excitation energy. The excess of light is, in fact, the main cause for the formation
of reactive oxygen species(ROS), chemical species that are able to oxidize many consti-
tutive molecules of photosynthetic organisms, producing an effect calledphotooxidative
damage. In the most extreme cases the damage suffered from organisms can produce
macroscopic effects like the lost of characteristic green color (due to the degradation
of chlorophyll molecules) or even the death. The phenomenonthat helps to deal with
quick light excess, and prevent ROS formation, is calledNon Photochemical Quench-
ing, shortlyNPQ phenomenon/process. In this phenomenon the excess of light can, in
fact, be dissipated through non chemical ways, when the excitation is transmitted to
particular molecules that can pass to their unexcited stateby emitting heat.

In this work we present a computational model for NPQ phenomenon obtained by
the Metabolic Log-Gain Principlecombined with techniques of multiple regression.
This principle was introduced in [15] and developed in [14] for the construction of
Metabolic P modelsfrom experimental data of a given process.Metabolic P Systems,

298 Toward an MP model of Non Photochemical Quenching

shortlyMP systems, are a special class of P systems, developed for expressing biolog-
ical metabolism and signaling transduction. MP systems were introduced in [21] for a
better understanding of quantitative aspect of biologicalsystems, meanwhile avoiding
the use of complex systems of differential equations. Differently from the classical P
systems [7, 25, 26], based on nondeterministic evolution strategies, MP systems have a
discrete evolution computed by deterministic algorithms called metabolic algorithms,
based on a new perspective introduced in [21] and then developed in the following
papers [5, 6, 16, 18, 20, 17, 19, 10]. This new perspective canbe synthesized by a new
principle which replaces themass action principleof Ordinary Differential Equations
(ODE), calledmass partition principle, which defines the transformation rate of object
populations rather than single objects, according to a suitable generalization of chemi-
cal laws. In [10] it has been demonstrated that exist, under suitable hypotheses and with
some approximation, an equivalence between ODE systems andMP models.

Starting from ODE models some significant biochemical processes effectively modeled
by MP systems are: Belousov-Zhabotinsky reaction in Brusellator formulation [5, 6],
the Lotka-Volterra dynamics [5, 21], the Suitable-Infect-Recovered epidemic [5], the
Protein Kinase C activation [6], the circadian rhythms [9] and the mitotic cycles in early
amphibian embryos [20]. The MP model of NPQ phenomenon, heredeveloped, is the
first MP model completely deduced by using experimental dataof observed behaviors
and without any use of previous ODE models.

2 NPQ phenomenon: a biological description

In this section a synthetic description of photosynthetic processes that underlies NPQ
phenomenon will be given. For a deeper description some reviews on the subject are
available in [23,24].

Light energy is absorbed by plants mainly by means of proteincomplexes calledlight
harvesting complexes(LHC) or antennae, which bind many chlorophyll molecules
(Chl) that are excited by light radiation. LHC are connectedto thephotosystems, pro-
tein super-complexes that host structures calledreaction centerswhere the first phases
of photosynthetic process occur.

When a chlorophyll molecule absorbs a photon it passes to theexcited state. Excited
states can be transferred to the reaction centers where a chemical reaction calledcharge
separationtakes place. Here the oxidation of two water molecules produces a stoichio-
metric amount of electrons, oxygen and hydrogen ions. Electrons are then carried to
enzymes which synthesize high energy molecules ATP and NADPH involved in the so-
calleddark phaseof photosynthesis (fixation of atmospheric CO2 to carbohydrates [3],
Figure 2.1, arrow 1). Moreover, excited chlorophyll molecules can be deexcited by pass-
ing energy to molecules that emit heat resulting from the nonphotochemical quenching
phenomenon (Figure 2.1, arrow 2), they can emit fluorescenceradiation (Figure 2.1,

Toward an MP model of Non Photochemical Quenching 299

arrow 3), or can decade in thetriplet state, that can be transferred to oxygen atoms thus
generating ROS (Figure 2.1, arrow 9).

Fig. 2.1 Main actors and relationships of NPQ phenomenon of excitation/deexcitation chlorophylls dia-

gram, according to the following abbreviations: chl = chlorophyll, ps = photosytem, h = hydrogen ion, r =

reactivity, p = NADPH, VDE = violaxanthin de-epoxidase, v = violaxanthin, z = zeaxanthin.

In this model photosystem supercomplexes include both reaction centers and antennas,
and can be inclosed state(when photons have been already accepted) oropen(when
the system is able to accept photons).

The LHC in addition to numerous chlorophyll molecules, bindother molecules, called
caroteoinds, which can absorb energy from excited chlorophyll molecules, to dissipate
it by heat generation. Two caroteoinds of great interest in the NPQ phenomenon arevi-
olaxanthinandzeaxanthin. When the absorption of solar radiation exceeds the capacity
of the organism to use it, an increase of hydrogen ions provides a signal of overexcita-
tion of the photosystems that triggers a regulative feed-back process. Theviolaxanthin
de-epoxidase, shortly VDE, once activated by hydrogen ions, catalyzes the cycle of
xanthophylls, which transform violaxanthin to zeaxanthin. The presenceof zeaxanthin,
bound to LCH, favours the NPQ fluorescence and heat production [1], that is respec-
tively, the arrows number2 and3 of Figure 2.1.

3 Metabolic P Systems

In an MP system the transition to the next state is calculatedaccording to amass par-
tition strategy, that is, the available substance is partitioned among all reactions which
need to consume it. The policy of matter partition is regulated at each instant byflux

300 Toward an MP model of Non Photochemical Quenching

regulations mapsor flux mapsassociated with reactions. The notion of MP system we
use comes essentially from [14], whereN andR respectively denote the sets of natural
and real numbers.

Definition 1. (MP system) An MP systemM is a discrete dynamical system specified
by the following construct:

M = (X, R, V, Q, Φ, ν, µ, τ, σ0, δ)

whereX , R andV are finite disjoint sets, and moreover the following conditions hold,
with n, m, k ∈ N:

• X = {x1, x2, . . . , xn} is a finite set of substances (the types of molecules);
• R = {r1, r2, . . . , rm} is a finite set of reactions. A reaction is a pair of typeα→ β,

with α, β strings over the alphabetX ;
• V = {v1, v2, . . . , vk}, k ∈ N, is a finite set of parameters provided by a set

H = {hv|v ∈ V } of parameters evolution functions. The functionhv : N → R
states the value of parameterv, and the vectorV [i] = (hv(i)|v ∈ V) represents
the values of parameters at the stepi;

• Q is a set of states viewed as functionsq : X ∪ V → R. If we considering an
observation instanti ranging in the set of natural numbers, the stateq at the instant
i can be identified as a vector

(X [i], V [i]) = (x1[i], x2[i], . . . , xn[i], v1[i], v2[i], . . . , vk[i])

of real numbers, constituted by the values which are assigned, byq, to the elements
of X ∪ V ;

• Φ = {ϕr|r ∈ R} is a set of flux regulation maps, where the functionϕr : Q → R
states the amount (moles) which is consumed or produced for every occurrence of
a reactant or product ofr. We putur[i] = ϕr(X [i], V [i]), also called the (reaction)
flux unit ofr at the stepi, whereU [i] = (ur[i]|r ∈ R) is the flux units vector;

• ν is a natural number which specifies the number of molecules ofa (conventional)
mole of M, as population unit of M;

• µ is a function which assigns, to eachx ∈ X , the massµ(x) of a mole of x (with
respect with to some measure units);

• τ is the temporal interval between two consecutive observation steps;
• σ0 ∈ Q is the initial state, that is,σ0 = (X [0], V [0]);
• δ : N→ Q is the dynamic of the system, whereδ(i) = (X [i], V [i]) for everyi ∈ N.

The vectorV [i] is given by the parameters evolution functions, while the substance
evolution is given by the following recurrent equation:

X [i + 1] = A× U [i] + X [i] (43)

whereA is the stoichiometric matrix ofR overX of dimensionn ×m (we define
this matrix below), while×, +, are the usual matrix product and vector sum.

Toward an MP model of Non Photochemical Quenching 301

Definition 2. (Stoichiometric matrix) The general form of a reaction isr : αr → βr,
whereαr is a string which identifies the multiset of the reactants (substrates) ofr and
βr a string which identifies the multiset of the products ofr. The stoichiometric matrix
A of a setR of reaction over a setX of substances isA = (Ax,r|x ∈ X, r ∈ R)
with Ax,r = |βr|x − |αr|x, where|αr|x and |βr|x respectively denote the number of
occurrences ofx in αr andβr.

4 A computational model for NPQ phenomenon

Now, we pose the following question:“Given a set of experimental data about the NPQ
phenomenon, is it possible to determine an MP system having adynamic in accordance
with the experiment, within an acceptable approximation, but which could also predict
the future behaviour of the process?”We will define an MP model that answers to this
question.

To represent the NPQ phenomenon it is necessary to know the values of the quantities
involved in the phenomenon, along the time. Literature data, complemented by experi-
mental measurements in the laboratory, on Arabidopsis thaliana wild type plants, made
it possible to estimate the fundamental values for a selected group of molecules involved
in the dissipation of light energy excess.

It is possible to measure the fraction of closed and opened photosystems. The presence
of many closed photosystems induces the incapacity of canalizing further amount of
energy through the photochemical way: it is the ideal situation to measure the NPQ
ability. To induce such a condition strong light flashes calledsaturating flashesare used.
With closed photosystems the reduction of the fluorescence yield (i.e. the efficiency of
nonphotochemical quenching) can be measured in function ofthe time. Our model takes
into account the reactivity of the system to reach equilibrium after light absorption.
The rate of fixation of CO2 during the NPQ measure condition gives an index of how
reactive is the system, as biochemical activity is strictlyconnected to the capacity of
absorbing light energy. The amount of chlorophyll molecules is related to the volume
and the surface of the model [2] and the amount of photosystems. The fluorescence
and NPQ value can be deducted in arbitrary units6 (a.u.) from measurements on the
sample [22]. NADPH produced has been estimated with laboratory measures, the pH
value was deduced by combining data from literature [8, 13, 27] and applying the rate
of change to the estimated pH values during the NPQ measure. VDE state and activity
was set in relation to various pH values [11]. The change overtime of violaxanthin and
zeaxanthin was obtained with lab measurements and on the VDEactivity [12].

The NPQ process discussed in Section 2 can be expressed by theset of reactions given
in Table 4.1. The first three reactions model the possible fates of excited chlorophylls

6Arbitrary units are values of suitable observable magnitudes which are proportional to a given phe-
nomenon. They are especially used for evaluating relative variations of variables.

302 Toward an MP model of Non Photochemical Quenching

(arrows1, 2 and3 in Figure 2.1), the fourth models the fact that the opened photosys-
tems turn into closed photosystems (arrow4 in Figure 2.1), the fifth and sixth represent
the ways that leads the unused products of reactionr1 to the dark phase of photosynthe-
sis (arrow labeled with numbers5 and6 in Figure 2.1). Finally, the seventh and eighth
represent xanthophylls cycle (arrows7 and8 in Figure 2.1).Tunersof a reactionri are
quantities which influence, with their variations, the variations of the flux units, as it is
indicated in Table 4.1.

Reactions Tuners

r1 : c→ o + 12h + p c, h, r, p

r2 : c→ c + q+ c, l, z, r, h

r3 : c→ c + f+ c, l, v, r, h

r4 : o→ c o, l, v/z

r5 : h→ λ h, r

r6 : p→ λ p, r

r7 : x + 100v→ x + 100z x, v

r8 : y + h→ x y, h

Table 4.1 NPQ reactions and tuners according to the following abbreviations: c = closed photosytems, o

= open photosytems, h = hydrogen ions, r = reactivity, p = NADPH, l = light, q+ = cumulative heat, f+ =

cumulative fluorescence, x = active VDE, y = inactive VDE, v = violaxanthin, z = zeaxanthin.

We introduce the cumulative value of fluorescence and NPQ, called f+ andq+ respec-
tively, as new substances which will be useful for the application of Log-Gain theory to
our model. The following equations definef+ andq+:

f+[j] =

j∑

i=0

f [i], q+[j] =

j∑

i=0

q[i] (44)

where the valuesf [i] andq[i] represent, respectively, the amount of fluorescence and
NPQ observed in the system at the stepi.

Almost all elements occurring in the definition of MP system are know, because they
are deduced by macroscopic observations of the biological phenomenon under investi-
gation. The only component which can’t be directly deduced is the set of flux regulation
functions. The problem is that each element ofΦ depends on the internal microscopic
processes in which molecules are involved [14]. This means that the key point, for
defining an MP system modelling the NPQ process, is the determination of the setΦ of
functions.

We can understand, from the Definition 1, that the knowledge of the number of moles
transformed by any rule in the temporal interval between twoconsecutive observation

Toward an MP model of Non Photochemical Quenching 303

steps are essential for the calculation of biological dynamics by means of MP systems.
The first step, in order to approximate the flux regulation maps, is to discover the nu-
meric values of the reaction fluxes at each observation step.In order to determine these
values we use theLog-Gain Principlefor MP systems, introduced in [15], which can be
seen as a special case of the fundamental principle calledallometry[4]. In this principle
it is assumed that a proportion exists between the relative variation ofur and the relative
variations of tuners ofr (in Table 4.1 the set of tuners, for each reaction, are given). In
more formal terms, the relative variation of an elementw ∈ X ∪ V is expressed, in
differential notation, byd(lg w)/dt, where the termlog-gaincomes from [28]. We use
a discrete notion of log-gain, given by the following equation:

Lg(w[i]) = (w[i + 1]− w[i])/w[i] (45)

on which the following principle is based.

Principle 1. (Log-Gain) Let U [i], for i ≥ 0, be the vector of fluxes at stepi. Then the
Log-Gain regulation can be expressed in terms of matrix and vector operations:

(U [i + 1]− U [i])/U [i] = B × L[i] + C × P [i + 1] (46)

where:

• B = (pr,w|r ∈ R, w ∈ X ∪ V) wherepr,w ∈ {0, 1} with pr,w = 1 if w is a tuner
of r andpr,w = 0 otherwise;

• L[i] = (Lg(w[i])|w ∈ X ∪ V) is the column vector of substances and parameters
log-gains ;

• P = (pr|r ∈ R) is the column offset vector. This vector is constituted by the
difference between tuner log-gains and flux log-gains;

• C is a column binary vector of0 and1 which selects some offsets for obtaining a
univocally solvable square linear system (see [14] for a detailed explanation);

• ×, +,−, / are, in this context (with some abuse of notation) the product, the sum,
the subtraction and division over matrix.

We callLG[i] the system of equations obtained by (46).

In an MP system the matrixB and vectorL[i] are determined by using the biological
information. In NPQ phenomenon the Log-Gain Principle provides the following matrix
B and vectorC × P [i + 1]:

304 Toward an MP model of Non Photochemical Quenching




0 1 1 1 0 0 0 0 0 0 0 1 0 0 0

0 1 1 0 0 0 0 1 0 0 1 1 0 0 0

0 1 1 0 0 0 1 0 0 0 1 1 0 0 0

1 0 0 0 0 0 0 0 0 0 1 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 0 0 0 0




,




p1[i + 1]

p2[i + 1]

p3[i + 1]

0

p4[i + 1]

p5[i + 1]

p6[i + 1]

p7[i + 1]




The transposedL[i]T of vectorL[i] of equation (46) is specified by the following equa-
tion:

L[i]T = Lg([a[i] c[i] h[i] p[i] x[i] y[i] v[i] z[i] f+[i] q+[i] l[i] r[i] f [i] q[i] (v/z)[i]])

We reduce the stoichiometric matrix by removing rows which are linearly dependent
on other rows (continuing to callA this reduced matrix) and we obtain the following
system of equations, calledSD[i] [15], which represents the substances variations

X [i + 1]−X [i] = A× U [i] (47)

where:

A =




−1 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

12 0 0 0 −1 0 0 −1

1 0 0 0 0 −1 0 0

0 0 0 0 0 0 −100 0

0 0 0 0 0 0 0 1




, X =




c[i]

q+[i]

f+[i]

h[i]

p[i]

v[i]

x[i]




If we assume to know the flux unit vector at stepi and put together the equations (46)
and (47) at stepsi andi + 1 respectively, we get a linear system calledoffset log-gain
adjustmentmodule at stepi, shortlyOLGA[i], in which the number of variables is equal
to the number of equations. In [14] it is proved that theOLGA[i] of an MP systemM
is univocally solvable for any stepi ≥ 0. In this way we obtain the followingOLGA[i]
system for NPQ process, where variables are in bold font and constitute the flux unit
vectorU [i + 1] and the offset vectorP [i + 1]:

A×U[i + 1] = X [i + 2]−X [i + 1] (48)

U[i + 1]− (C ×P[i + 1])× U [i] = (U [i]× (B × L[i])) + U [i]

Now, as the vectorsX [i] andV [i], for 1 ≤ i ≤ 810, are given by experimental measures,
we solve the system (48) fori = 0, . . . , 809 obtaining the vectorU [i] for i ∈ [1, 810].
This procedure requires the knowledge ofU [0]. Actually, there are several possibilities

Toward an MP model of Non Photochemical Quenching 305

under investigation to obtain this vector. In our case, we consider a system composed
by the set of equationsLG[i] + SD[i] and we used a suitable iterative technique [15] in
order to solve a non-linear system of equations giving a goodapproximation ofU [0].

Given the values of the unit reactions for a sequence of steps, the problem, as pre-
viously stated, is to discover the setΦ of flux regulation functions. Although a flux
regulation mapϕr depends on the state of the MP system, we can assume that only
some substances and parameters are relevant for it. We call these elementsregulators
of ϕr. We use standard multiple regression techniques to find an approximation ofϕr

(with respects to its regulators). The resulting functions, given in Table 4.2, approxi-
mate the regulation functionΦ associated to each reactionr ∈ R. It is possible to see
in Figure 4.2 that the behaviors of fluorescence and heat obtained by our MP model are
in accordance with the observed values (they are the most interesting parameters of the
phenomenon).

Reactions Flux regulation maps

r1 : c→ o + 12h + p ϕr1 = α1 + β1ol + γ1cl + η1rl + ϑ1hlp + ρ1
v
z l

r2 : c→ c + q+ ϕr2 = α2 + β2c + γ2r + η2z + ϑ2l + ρ2h

r3 : c→ c + f+ ϕr3 = α3 + β3ch + γ3v + η3r
−1l

r4 : o→ c ϕr4 = α4 + β4ol + γ4cl + η4rl + ϑ4hlp + ρ4
v
z l

r5 : h→ λ ϕr5 = α5 + β5ol + γ5cl + η5rl + ϑ5hlp + ρ5
v
z l

r6 : p→ λ ϕr6 = α6 + β6ol + γ6cl + η6rl + ϑ6hlp + ρ6
v
z l

r7 : x + 100v→ x + 100z ϕr7 = α7 + β7v + γ7x

r8 : y + h→ x ϕr8 = α8 + β8y + γ8h

Table 4.2 NPQ reactions and flux regulation maps. The values of polynomial coefficients can be down-

loaded from [29].

5 Conclusions

Our proposed model of NPQ phenomenon, allowed to reproduce quite accurately ex-
perimental results for the Arabidopsis wild type case. The predictive ability of computa-
tional experiments are so far limited, but it is our objective to progress to an MP model
that will be a valuable tool to suggest biological phenomenaeasily observable in silicio,
like pH values or effects of mutations.

The analysis of NPQ process here reported is oversimplified in many aspects. In fact,
two kinds of photosystems are involved which play collateral role and may influence the
overall dynamics of chlorophyll deexcitation. It is out of the aim of this paper to take into
account these more detailed aspects. However, we limit ourselves to reproduce in our
mathematical model the observed data of NPQ phenomenon, where fluorescence and

306 Toward an MP model of Non Photochemical Quenching

Fig. 4.2 Value of the fluorescence and NPQ, in a. u., during the experimental measurements (top) and

simulation results obtained by MP system (bottom). Notice that while experimental heat is measured in cor-

respondence of saturating flash, simulated one is continuous. Our results allow to hypothesize that also the

NPQ values are perturbated by flash of light.

heat curves show a particular shape related to the efficiencyof this mechanism to dissi-
pating excess of light energy. An interesting property which is predicted by our model
is that fluorescence decreases in dependence of photochemical activity (photochemical
quenching) and non photochemical dissipation. It will be matter of future investigation
to take into account other relevant aspects, when reliable data should be available for
extending out analysis. In particular, we want to consider some different ways that lead
to fluorescence decrease (i.e. LHC migration between photosystems and ROS damages
consequences).

The theory of MP systems is evolving and crucial tasks remainto be performed for a
complete discovery of the underlying MP dynamics which explains the observed dy-
namics. The principal investigations are directed to the study of systematic ways for
deducing the flux regulation maps from the time series of flux vectors. This problem is
directly related to the search of the best regulators associated to reactions. Different re-
search lines are active in this direction and important roles will be given by statistics and
genetic programming. However, the modeling of real important biological phenomena
is an essential activity for orientating the research of general methods and principles for
the theory of MP systems.

Toward an MP model of Non Photochemical Quenching 307

Acknowledgments. We are grateful with Prof. Bassi’s group of Biotechnological De-
partment, at University of Verona, for laboratory analysisand Petronia Carillo, Depart-
ment of Life Sciences, Second University of Naples, for CO2 uptake measurements in
relation to the experiment relevant to us.

Bibliography

[1] T.K. Ahn, T.J Avenson, M. Ballottari, Y.C Cheng, K.K. Niyogi, R. Bassi, and
G.R. Fleming. Architecture of a charge-transfer state regulating light harvesting
in a plant antenna protein.Science, 9(320(5877)):794–797, 2008.

[2] N.N. Alder and S.M. Theg. Energetics of protein transport across biological mem-
branes: a study of the thylakoid∆pH-dependent/cptat pathway.Cell, 112:231–
242, 2003.

[3] A. Benson and M. Calvin. Carbon dioxide fixation by green plants.Annual Review
of Plant Physiology and Plant Molecular Biology, 1:25–42, 1950.

[4] L. von Bertalanffy.General Systems Theory: Foundations, Developments, Appli-
cations. George Braziller Inc, New York, NY, 1967.

[5] L. Bianco, F. Fontana, G. Franco, and V. Manca. P systems for biological dynam-
ics. In [7] , pages 81–126. Springer, 2006.

[6] L. Bianco, G. Fontana, and V. Manca. P systems with reaction maps.International
Journal of Foundations of Computer Science, 17(1):27–48, 2006.

[7] G. Ciobanu, G. Păun, and M.J. Pérez-Jiménez, editors. Applications of Membrane
Computing. Springer, 2006.

[8] Y. Evron and R.E. McCarty. Simultaneous measurement of deltapH and electron
transport in chloroplast thylakoids by 9-aminoacridine fluorescence.Plant Phys-
iol, 124:407–414, 2000.

[9] F. Fontana, L. Bianco, and V. Manca. P systems and the modeling of biochemical
oscillations. In R. Freud, G. Păun, G. Rozenberg, and A. Salomaa, editors,Mem-
brane Computing, WMC 2005,LNCS, volume 3850, pages 199–208. Springer,
2005.

[10] F. Fontana and V. Manca. Discrete solution to differential equations by metabolic
P systems.Theoretical Computer Science, 372:165–182, 2007.

[11] A. Gisselsson, A. Szilagyi, and H. Akerlund. Role of histidines in the binding of
violaxanthin de-epoxidase to the thylakoid membrane as studied by site-directed
mutagenesis.Physiol. Plant., 122:337–343, 2004.

[12] A.R Holzwarth. Applications of ultrafast laser spectroscopy for the study of bio-
logical systems.Q. Rev. Biophys, 22:239–295, 1989.

[13] A. Kanazawa and D. M. Kramer. In vivo modulation of nonphotochemical ex-
citon quenching (NPQ) by regulation of the chloroplast atp synthase. PNAS,
99(20):12789–12794, 2002.

[14] V. Manca. Log-Gain Principles for Metabolic P Systems.In G. Rozenberg
Festschrift. To appear.

308 Toward an MP model of Non Photochemical Quenching

[15] V. Manca. The Metabolic Algorithm: Principles and Applications. Theoretical
Computer Science. http://dx.doi.org/10.1016/j.tcs.2008.04.015. In print.

[16] V. Manca. Topics and problems in metabolic P systems. InG. Păun and M.J.
Pérez-Jiménez, editors,Membrane Computing (BWMC4). Fenix Editora, Sevilla,
Spain, 2006.

[17] V. Manca. Metabolic P Systems for Biochemical Dynamics. Progress in Natural
Science, 17(4):384–391, 2007.

[18] V. Manca. MP systems approaches to biochemical dynamics: Biological rhythms
and oscillation. In H.J. Hoogeboom G. Păun, G. Rozenberg, and A. Salomaa,
editors,Membrane Computing, WMC 2006, LNCS 4361, 8699. Springer, 2007.

[19] V. Manca. Discrete Simulation of Biochemical Dynamics. In M. H. Garzon and
H. Yan, editors,DNA 13, LNCS 4848, pages 231–235. Springer, 2008.

[20] V. Manca and L. Bianco. Biological networks in metabolic P systems.BioSystems,
91(3):489–498, 2008.

[21] V. Manca, L. Bianco, and F. Fontana. Evolutions and oscillations of P sys-
tems: Applications to biological phenomena. In G.Mauri, M.J. Pérez-Jiménez,
G. Păun, G. Rozenberg, and A. Salomaa, editors,Membrane Computing, WMC
2004, LNCS, volume 3365, pages 63–84. Springer, 2005.

[22] K. Maxwell and G.N. Johnson. Chlorophyll fluorescence -a practical guide.Jour-
nal of Experimental Botany, 51(345):659–668, 2000.

[23] N. Nelson and A. Ben-Shem. The complex architecture of oxygenic photosynthe-
sis. Nature Reviews Molecular Cell Biology, 5:971–982, 2006.

[24] N. Nelson and C. Yocum. Structure and Function of Photosystems I and II.The
Annual Review of Plant Biology, 57:521–565, 2006.

[25] G. Păun. Computing with membranes.Journal of Computer and System Sciences,
61(1):108–143, 2000.

[26] G. Păun.Membrane Computing. Springer, 2002.
[27] B.V. Trubitsin and A.N. Tikhonov. Determination of a transmembrane pH differ-

ence in chloroplasts with a spin label tempamine.Journal of Magnetic Resonance,
163:257–269, 2003.

[28] E. O. Voit. Computational Analysis of Biochemical Systems. Cambridge Univer-
sity Press, 2000.

[29] Web Pages of polynomial coefficients associated to flux regulation maps of NPQ
phenomenon: http://profs.sci.univr.it/∼manca/draft/npq-coefficients.pdf.

Applications of Page Ranking in P Systems

———————————————
Michael Muskulus

Leiden University, Mathematical Institute,
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
muskulus@math.leidenuniv.nl

The page rank of a webpage is a numerical estimate of its importance. In
Google’s PageRank algorithm the ranking is derived as the invariant probability
distribution of a Markov chain random surfer model. The crucial point in this
algorithm is the addition of a small probability transitionfor each pair of states
to make the transition matrix irreducible and aperiodic. Weshow how the same
idea can be applied to P systems and allows to define a probability distribution
on the objects, resulting in a new complexity measure for P systems. Another
interesting application is the pathway identification problem, where informa-
tion about biochemical reactions from public databases allows to construct a
metabolite graph. The invariant distribution should allowto search pathways
in this graph more efficiently than the degree weighted algorithms used at the
moment. From such automatic pathway calculations one can then construct P
system models for targeted metabolic compounds and their reactions.

1 Introduction

Page ranking is the process of assigning a quantitative measure of “authority” to a web-
page. Internet search engines usually use a combination of key word related measures
and general page ranks to order the results of a user query. These results are displayed in
a linear order, and the higher the combined rank of a webpage,the higher in the resulting
list it is displayed. Since a higher rank means a higher visibility, there has developed a
large commercial interest in optimizing a webpage’s content with the goal of improving
its ranking, and nowadays the activity ofsearch engine optimizationhas become a full-
time job for many people. On the other hand, users of a search engine expect results that
lead them to their desired search goals efficiently, so in a way a search engine should
optimize their ranking methods with regards to user preferences. In particular, it can be
argued that a search engine should use ranking strategies which are objective and unbi-
ased. But note that this leads to a dilemma: if a search enginewould openly publish its
ranking algorithms, on the one hand this would benefit its users, since then they could,
in principle at least, target their queries better. On the other hand, this knowledge would
enable owners and designers of webpages to target their desired audience by specific
search engine optimization strategies — which might not be what users desire. At the
moment, search engines therefore keep their algorithms andranking methods as closely

310 Applications of Page Ranking in P Systems

guarded secrets. This is, of course, not the only possible solution, but seems to also
stem from (i) considerations about competition between distinct search engines, and (ii)
probably the assumption that the benefit for the common user would be negligible, since
on the average s/he would not be able to understand the algorithms, whereas commercial
companies would.

A particular case is Google, probably the most important general purpose search engine
of today. It is believed by professional consultants that its page ranking methods take
into account more than 200 distinct factors7, but Google states that the “heart of their
software” is an algorithm calledPageRank[13], whose name seems to be inspired by
the last name of Google founder Lawrence Page [34].

The original ranking algorithm behind Google has been published [6, 29] and is also
patented (sic!) as a “Method for node ranking in a linked database” (US patent no. 6.285.
999), assigned to Stanford University. It can be shown thatPageRankis natural in the
sense that a few axioms, motivated by the theory of social choice, uniquely character-
ize PageRank[1]. Interestingly, the same method has recently been proposed as a new
method of citation analysis that is more authoritative, as self-citations have less impact
than in traditional citation analysis [24].

In the following we will describe applications of page ranking in the area of membrane
systems. We will specifically concentrate on the originalPageRankalgorithm, since it
is closely related to Markov chain modelling of dynamical P systems as in [27]. The ap-
plications that we will discuss are (i) defining theasymptotic behaviorof dynamical P
systems, (ii)approximatingthis asymptotic behavior in a manageable way, (iii) defining
a newcomplexity measurefor dynamical P systems, and (iv) applications in theiden-
tification of P systems, where biochemical databases are used to suggest interesting P
system models via pathway extraction.

2 The PageRank algorithm

The description of thePageRankalgorithm is usually given in terms of the so-called
webgraph. This is the directed graphD = (V, A) where each nodeu ∈ V represents
a webpage and each arc(u, v) ∈ A ⊆ V 2 represents a link. A link from pageu ∈ V
to v ∈ V can be thought of as providing evidence thatv is an “important” page or,
more generally, as avotefor pagev. Intuitively, the more authorative pageu itself is,
the higher its vote for pagev should count, leading to a recursive definition as follows.
Let

r : V → R+

v 7→ r(v)

7An analysis of the most important factors used by Google can be found on
http://www.seomoz.org/article/search-ranking-factor s .

Applications of Page Ranking in P Systems 311

be theranking functionthat assigns a numerical valuer(v) to each nodev in the web-
graph. Then

r(v) :=
∑

u∈{V |(u,v)∈A}

r(u)

outdeg(u)

where the sum runs over all nodesu linking to the pagev andoutdeg(u) is the out-
degree of nodeu. In the above interpretation, each page thus transfers its own PageRank
value equally to all of its link targets. Note that webpages can link multiple times to the
same page, but that this counts as only one link, i.e. one arc in the webgraph.

To see that thePageRankranking function is well defined, we need to turn to the theory
of Markov chains [5]. Since the webgraph is finite, the function r can be normalized
such that

∑
v∈V r(v) = 1. One can then interpreter ∈ R|V |

+ as a probability distribution
over the setV of webpages. Thetransition matrix

Puv =

{
1/outdeg(u) if (u, v) ∈ A,

0 if (u, v) /∈ A

then corresponds to the model for a person surfing between webpages, from now on
simply addressed as asurfer, described in [6]. In this so-calledrandom surfer modela
surfer is considered who randomly follows links, without any preference or bias. The
matrixPuv then describes the probability for the surfer, being at pageu, to visit pagev
next. ThePageRankdefinition is then equivalent to the following matrix equation:

r = P tr.

In the language of Markov chain theory this means thatr is required to be astationary
distribution. In other words, if a large number of random surfers find themselves, at the
same time, at webpages distributed according to these probabilities, then after randomly
following a link, the individual surfers would end up at different pages, but the number
of surfers visiting each webpage would stay approximately the same (exactly the same
in the limit of an infinite number of surfers).

Markov chain theory tells us when such a stationary distribution exists and when it is
unique. By the ergodic theorem for Markov chains, anaperiodicandirreducible tran-
sition matrix P is sufficient. The transition matrix is aperiodic if the least common
multiple of all possible circuits in the webgraph is trivial. This can always be assumed
for general digraphs, since only very special digraphs are periodic. Irreducibility is the
requirement that each webpage is reachable from each other page, i.e. that the webgraph
is strongly connected, and this is usuallynot fulfilled by the transition matrix. In partic-
ular, the webgraph usually has pages without outbound links, so-calleddanglingpages
or, in the language of Markov chain theory,sinksor black holes. If one were to apply
thePageRankidea to a digraph with one or more of these, they would effectively absorb
all probability, since eventually a random surfer would always end up in a black hole
and stay there forever. To be more precise: One would expect that the resulting invariant

312 Applications of Page Ranking in P Systems

distribution would be zero for all non-sinks, and each sink would be assigned the prob-
ability of ending up in it, starting from a random page, in accordance with the random
surfer model. However, this is not true. There simply would not exist any stationary
distribution in such a case. This “singular” behavior led some people to call such pages
black holes, since the usual laws of Markov chain theory cease to work, when one of
these is encountered.

The solution to this problem is the truly original idea of thefounders of Google: In
analogy with the random surfer model, it is assumed that a surfer ending on a sink gets
bored and turnsrandomlyto a new page from the whole webgraph, which is called
teleportationin [17]. Of course, this is a somewhat unrealistic model for actual inter-
net user behavior, since how does a surferfind a randomwebpage (and with uniform
probablity)? But changing the transition matrix accordingly,

P̄uv =





1/outdeg(u) if (u, v) ∈ A,

1/|V | if outdeg(u) = 0,

0 if outdeg(u) > 0 and(u, v) /∈ A

leads to a matrix with irreducibleblocks(which is still not irreducible, though, except
in special cases). Finally, extending this idea and assuming that the surfer has a certain
chanceα > 0 of turning to a random pageeverytime s/he follows a link, leads to

¯̄Puv =





1/|V | if outdeg(u) = 0,

α/|V | if outdeg(u) > 0 and(u, v) /∈ A,

α/|V |+ (1 − α)/outdeg(u) if (u, v) ∈ A

(49)

which is truly an irreducible and aperiodic matrix [23]. Thestationary distributionr is
then, also by the ergodic theorem, anasymptotic distribution. This means that a random
surfer, starting at an arbitrary webpage, has the chancer(u) to be at pageu ∈ V , if he
has followed a large number of links, usingPuv as transition matrix:

lim
n→∞

(P t)nx0 = r, (50)

independent of the initial distributionx0, i.e. his/her starting page(s). Note that there is
a probabilityα/|V | that the random surferstaysat the same page (we can also say that
the surferaccidentally“jumps” to the same page that he comes from), i.e. we explicitly
allow self-transitions here, since it makes the mathematical analysis simpler.

These results are consequences of the Perron-Frobenius theorem [3], which also shows
thatr is the (normalized)dominant eigenvectorof P t, i.e. the corresponding eigenvalue
λ = 1 is the largest eigenvalueP t possesses. In practice, the direct computation of
the dominant eigenvector for the (sparse) transitition matrix of the webgraph is very
difficult, due to the graph’s enormous size. On the other hand, Eq. 50, starting from
the uniform distributionx0(u) = 1/|V | can be used, and is usually called thepower
method[12]. See [17] for further improvements.

Applications of Page Ranking in P Systems 313

3 Leaky P systems

P system is a general term to describe a broad class of unconvential models of computa-
tion that are usually based on multiset rewriting in a hierarchical structure of so-called
membranes [31], but also include computational models based on other mechanisms,
for example string or grammar rewriting. Originally introduced by Gheorghe Păun in a
seminal paper [30], nowadays there exists a large communityof researchers working on
and with different extensions and variants of P systems.

How are we to interprete the above changes in the context of P systems, i.e. when we
are thinking about the random surfer model with possible jumps (Eq. 49) not only as
mathematically necessary and convenient, but rather as a real feature of a P system?
Obviously, such a mechanism can turn the multisets that describe the object content of
a P system into completely different multisets — and we need to control the outcome of
such an operation somehow, since otherwise we would end up with an infinite number
of possibilities, as multisets are (usually) unbounded.

Let us first consider the case of a probabilistic P system as in[9]. Starting from an
initial configuration (multiset)c0 the evolution of a probabilistic P system generates a
rooted tree. The leavesL of this tree are the halting states and each halting stateh ∈ L
is reached with a distinct probabilityph, where

∑
h∈L ph = 1. If we now introduce

additional transitions from each halting state back to the initial statec0, we have an
irreducible Markov chain. This system could be periodic, but it is easy to see that for
such a (finite) “closed tree” an invariant probability distribution exists as in the case of
an irreducible and aperiodic Markov chain. In fact, the invariant distribution for a state
i ∈ S is given byµi = 1/|S| · pc0,i, wherepc0,i is the probability of reaching the statei
when starting fromc0. The factor1/|S| has been introduced such that

∑
i∈S µi = 1. So

we see that the concept of invariant distribution generalizes the probability of reaching
a halting state in a probabilistic P system. However, this isnot the same as the dynamics
proposed in Eq. 49. It is interesting to ask how the invariantmeasure changes when we
additionally introduce the teleportation property exhibited by Eq. 49.

Problem 3.1 Given a finite Markov chain on a setV with a unique invariant distribu-
tion µ ∈ R|V |

+ , how doesµ change when we replace the transition probabilitiespij by
(1 − α)pij + α

|V |?

To our knowledge, there has not been much progress on this question, although numer-
ical studies have been done in case of the webgraph (confer [23] for references).

Let us now consider a more general situation. Assume that at each time step8 there is a

8If time is assumed to be continuous, as in dynamical P systemsthat are simulated by Gillespie-type algo-
rithms, there is still a discrete sequence of events, and by introducing an exponential waiting time distribution
for such an event the same comments also apply to this case.

314 Applications of Page Ranking in P Systems

small probability for each object to change spontaneously into another object, analogous
to mutations in DNA, where one base can suddenly change into one of the other three
possible bases (such a change could be caused by UV radiation, for example). Of course,
the objects undergoing such a change cannot be used in another rule at this time step. In
fact, by adding rules of the formu→ v for each possible pair of objects(u, v), we can
realize this mechanism easily. Let us call a P system with this property aleakyP system.
Note that leaky P systems are not always irreducible, as the simple example of a system
with the rule2A → B shows: From the state with only oneB we can never get to a
state with more than oneA, although the opposite is possible. However, if all rules were
reversible, a leaky P system would be irreducible and have aninvariant distribution.

Interesting as these thoughts are, they lead too far here, but we think that leaky P systems
should be investigated more closely. For example, a successful computation in a leaky
P system would need to be robust against the continuous possibility of small changes of
its objects. How could this be realized? Moreover, the following two problems should
be looked into:

Problem 3.2 Given an irreducible aperiodic Markov chain, when adding the telepor-
tation property of Eq. 49 (for some choice ofα > 0), do the corresponding invariant
distributionsµ(α) converge in the limitα→ 0?

Problem 3.3 Although the random surfer model does not apply to a leaky P system,
does the invariant distribution of a leaky P system, in case it exists, converge against
the same invariant distribution as in the random surfer model (of the same underlying
P system), in the limit thatα→ 0?

Intuition suggests that the answers to both questions should be affirmative.

4 Asymptotic behavior of P systems

A particular interesting application area for P systems is the emerging discipline of
systems biology [21], and in the past years a number of biological systems have been
simulated and anlyzed by P systems [8, 33]. It should be noted, however, that this line
of research is only a small part of the total work on P systems,so we consider P systems
from a particular perspective here.

The original state-transition P systems are characterizedby a unique description of their
dynamical behavior in terms of anondeterministicandmaximally parallelapplication
of rules. The first of these concepts puts the focus not on an actual realization of behav-
ior of a P system, but on all possible computations possible with it, i.e. on the (formal)
languagegenerated by it. The concept of maximal parallelism allows interesting con-
trol structures, but seems rather inappropriate when modelling in a biological context.

Applications of Page Ranking in P Systems 315

Therefore, a number of researchers have turned todynamicalP system models, where
the nondeterministic dynamics is replaced by a sequential and probabilistic evolution
law. Two important approaches aredynamically probabilistic P systems[32] and the
metabolic algorithmdeveloped and propagated by V. Manca and colleagues [4,25].The
first is directly based on mass action kinetics [15], whereasthe latter considers a special
form of competition of rules for objects, called themass partition principle. Another
approach has been proposed in [33], where rules have fixed reaction rates.

As has been discussed in [27], static9 dynamical P systems are Markov chains. Unfor-
tunately, thestate spaceof a dynamical P system is usually very large.

Example 1. (Brusselator) Consider a membrane system on a set of three objectsO =
{A, B, C}, and with the following four rules:

r1 : λ→ A, r2 : A→ B,

r3 : 2A + B → C, r4 : C → 3A,

whereλ denotes the empty multiset and can be interpreted as a (yet unspecified) inflow.
This is an equivalent of the Brusselator, a discrete model ofthe Belousov-Zhabotinskii
chemical oscillation reaction. Its state spaceX consists, in principle, of all multiset
configurations on three objects, i.e.X = N3

0, where we identify a multiset with a vector
of nonnegative numbersN0 = {0, 1, 2, . . .}.

Although no dynamical law has yet been specified, a biochemically motivated law,
based on mass action kinetics, for example, results in a transition matrixPij , where
i, j ∈ X and the entries ofPij depend, usually nonlinearly, on the statei.

The asymptotic behaviorof a dynamical P system can then, in principle, be defined
as its stationary distribution as in the case of the webgraph. Applying ideas from the
PageRankalgorithm, halting states of the system, in analogy with dangling links, are
assumed to result in a teleportation to an arbitrary state ofX . Also, at each time step
there is a small probabilityα > 0 that the system teleports to a random state fromX .

It should be clear that a prerequisite for the definition of the asymptotic behavior of
a dynamical P system is thefinitenessof its state space, so this concept will only be
applicable in some special cases. Even then, due to the potential size of the state space
it is not clear at the moment how to actually perform such an analysis. In the next section
we will therefore propose a much simpler characterization of the “asymptotic behavior”
of a dynamical P system.

9A P system is static if the membrane structure does not evolvein the course of time. To be more precise:
membrane creation or destruction are not allowed in a staticP system.

316 Applications of Page Ranking in P Systems

A

B

C

A

B

1

C

1/2

1

 3

Fig. 5.1 The object network (left panel) and the stoichiometric network (right panel) of the Brus-
selator example.

5 Approximating asymptotic behavior

Since the state space in dynamical P systems is usually infinite, a stationary distribution
usually does not exist, or even if it does, it is not clear how to actually compute it. An
interesting alternative is to simplify the situation considerably. Instead of working with
the state space on which the dynamics takes place, we work with theobject networkof
the P system.

Definition 1 Theobject networkof a P system is the directed graphD = (V, A), where
the vertex setV is given by the set of objects, and there exists an arc(u, v) ∈ A between
two objectsu, v ∈ V if there exists a rewriting rule of the form

p1u1 + · · ·+ pnun → q1v1 + · · ·+ qmvm, pk, ql ≥ 1 for all k ≤ n, l ≤ m,

and furthermoreu = ui andv = vj for some indicesi ≤ n andj ≤ m.

Theconnectivity matrixof a P system is then the adjacency matrix of its object network.

Definition 2 Theranking matrixof a P system is the matrix̄̄C (confer Eq. 49) whereC
is its connectivity matrix.

Example 2 The object network of the Brusselator example is shown in theleft panel
of Figure 5.1. It is obviously aperiodic and irreducible. Its connectivity matrix and the
corresponding ranking matrix are, respectively,

C =




0 1 1

0 0 1

1 0 0


 , ¯̄C =




α/3 1/2− α/6 1/2− α/6

α/3 α/3 1− 2α/3

1− 2α/3 α/3 α/3


 .

Applications of Page Ranking in P Systems 317

Definition 3 Thestationary object distributionof a P system is the dominant eigenvec-
tor of its ranking matrix.

Numerical values are given with an accuracy of three digits in the rest of the paper, if
not otherwise stated.

Example 3 For the Brusselator example, choosingα = 0.01, the stationary object dis-
tribution is

(0.399, 0.201, 0.399)t,

i.e. in the long-term limit one expects 40 percent of all objects to be of type A, 20 percent
to be of type B, and 40 percent to be of type C. Of course, depending on the actual
dynamical law, the true long-term distributions of these numbers will vary considerably
from these approximate values.

Up to now, only thetopologicalinformation about how objects can be transformed into
each other has been used. However, in a P system there are two more levels that can be
considered, namely (i) the stoichiometry and (ii) reactionrates.

Definition 4 Thestoichiometric networkof a P system is the weighted digraphW =
(V, A, w), where(V, A) is the object network andw is thestoichiometric weighton
each arc, i.e.w(u, v) ∈ Z describes the number of objects of typev ∈ V that result
when all the rules are applied simultaneously whereu ∈ V appears (somewhere) on
the left-hand side, andv (somewhere) on the right-hand side.

Note that, to avoid multigraphs with parallel arcs, the definition of the stoichiometric
network effectively sums the contributions of all rules to the stoichiometry of a target
object. Normalizing the stoichiometric weights, we arriveat thenormalized stoichio-
metric weightsW (1), conveniently written as a matrix whose rows all sum to one:

W (1)
uv :=

Wuv∑
w∈V Wuw

.

Definition 5 Thestoichiometric ranking matrixof a P system is the matrix̄̄W (1) (confer
Eq. 49).

Example 4 The stoichiometric weights, the normalized stoichiometric weights, and the
stoichiometric ranking matrix of the Brusselator example are, respectively

318 Applications of Page Ranking in P Systems

W =




0 1 1/2

0 0 1

3 0 0


 , W (1) =




0 2/3 1/3

0 0 1

1 0 0


 ,

¯̄W (1) =




α/3 2/3− α/6 1/3− α/6

α/3 α/3 1− 2α/3

1− 2α/3 α/3 α/3


 .

The latter has dominant eigenvectorp ≈ (0.375, 0.25, 0.375)t.

One important question, that we have avoided so far, is the behavior of stationary distri-
butions of a (weighted) digraph under restriction. In applications, we might only be in-
terested in a small part of a P system, or the dynamics of the complement might not even
be known explicitly. To address this question, we interprete the stationary distribution
over the objects as aninvariant flow. Given a ranking matrixR and a stationary distri-
butionp for R, its nonnegative entriesRuv multiplied by the (probability) masspu are
interpreted as a flow from nodeu to nodev. The total sum of inflows

∑
w∈V (pwRwu)

into a nodeu ∈ V , and the total sum of outflowspu ·
∑

w∈V Ruw are equal. Moreover,
the total flow

∑
u,v∈V (puRuv) is equal to one.

Given acut of V , i.e. a setA1 ⊂ A of arcs that separatesV1 ⊂ V from its complement
V \ V1, the corresponding partition of arcs is[A1, A \ A1], whereA1 = {(u, v) |
exactly one ofu or v lies in V1}. We interpreteV1 as a subnetwork ofV . It is clear that
the invariant in- and outflows across the cut are equal:

∑

(u,v)∈A1,u/∈V1

puRuv =
∑

(u,v)∈A1,u∈V1

puRuv.

If we replaceV \ V1 by a single nodee /∈ V and all relevant arcs by their obvious
connections withe, the invariant distribution of the networkV1 ∪ {e}, restricted toV1

and then normalized, will be the same as that ofV for a certaineffectivechoice of
in-weightsw(e, V1).

However, to compute these effective in-weights, one needs to know the structure of the
complement ofV1 — or one has to treat the weightsw(e, V1) as unknowns and use
further constraints to determine them.

Example 5 Consider the network shown in the left panel of Figure 5.2. Its dominant
eigenvector isp = (0.300, 0.150, 0.275, 0.275, 0.075, 0.125)t.

The dotted arcs represent a cut separating the subnetworkV1 = {A, B, C} from {D, E,
F}. Replacing the latter by the single nodeS results in the network shown in the right
panel of Figure 5.2. With the effective edge weights from thefigure,w(S, A) = 1/6
andw(S, C) = 5/6, its dominant eigenvector isp′ = (12/35, 6/35, 11/35, 6/35)t. The

Applications of Page Ranking in P Systems 319

A B
 2/4

C

 1/4

F

 1/4

 1/2

D

 1/2
 1

 1

E

 1

 1/3

 2/3

A

B

 2/4

C

 1/4S

 1/4

 1/2

 1/2
 1

 1/6

 5/6

Fig. 5.2 Extended Brusselator system, where three additional objects have been added. The num-
bers on the edges are the normalized stoichiometric weights. The network in the right panel is
derived from the left one by the construction described in the text.

(normalized) restriction ofp to V1 is p1 = (0.414, 0.207, 0.379)t, which is the same as
the restriction ofp′ to V1.

More important is the situation in which we are given the flowsacross the cut as an
external constraint. Normalizing the sum of inflows such that

∑
(u,v)∈A1,u/∈V1

puRuv =
1, we can interprete this flow as a probability flow. It is then possible to calculate an
invariant distribution for the subnetwork by closing the system, connecting in- with
outflows. Of course, to avoid the reducibility and aperiodicity problems, we need to
introduce some teleportation, as before.

Let us also briefly consider the analysis of steady state fluxes in biochemical networks.
Given a stoichiometric matrixS ∈ Zm×n that describes the possible transitions of a
chemical system, and some external fluxesb ∈ Rm

+ , one searches for a solutionx ∈ Rn

of the equationS · x = 0, which is interpreted as a steady state flux. In the context
of P systems, we can think ofx as anapplication vector, telling us how often each
rule has to be used. Unfortunately, linear algebra cannot beused, since the solutions
need to be positive, i.e. it is necessary thatxi ≥ 0 for some of the components ofx =
(x1, . . . , xn), since we cannot have negative rule applications. Therefore, one resorts to
convex analysis and calculates the convex cone of all possible solutions [20]. This cone
is usually not unique, so there are many possible steady state fluxes across the system.

But consider now what happens if we make use of the probabilities for transitions, not
only the topology. The invariant distribution then inducesa uniquesteady state flux,
in contrast to the topological case. The implications of this, especially with regard to
pathway analysis, have yet to be fully realized (see below).

320 Applications of Page Ranking in P Systems

6 A new complexity measure

From a stationary distribution of the object network we immediately derive a complexity
measure for P systems.

Definition 6 Theobject entropyof a P system is the entropy of its stationary object
distribution. That is, ifp ∈ Rn

+ is its stationary object distribution, then

h =
−∑n

i=1 pi log pi

log n

is its object entropy, where0 log 0 is interpreted as0.

The denominator has been chosen such that0 ≤ h ≤ 1 holds. A low value ofh signifies
a very ordered state, whereas a value ofh close to one signifies that the stationary object
distribution is almost uniform.

Example 6 For the Brusselator example, the object entropy ish = 0.961. For the
extended Brusselator example in the left panel of Figure 5.2, the object entropy is
h = 0.921, corresponding to the higher complexity of it. The system onthe right panel
of that figure has object entropyh = 0.963.

This idea generalizes theglobal entropyof [9], where a similar complexity measure
has been introduced for probabilistic P systems with an evolution tree. Of course, the
question arises what the advantage of such a measure is, compared to other complexity
measures (for a list of possible candidates, see [7]). An important point here is that the
definition of entropy of an invariant distribution is a mathematically elegant concept that
quantifies the complexity of the dynamics of a P system in a waythat easily relates to
complexity considerations in other fields of science (confer [2]).

7 Page ranking in P system identification

In a previous work [26] we have discussed the general problemof identification of P
systems; here we will focus on the application of page ranking to this problem. System
identification can be considered the reverse of the usual modelling and analysis process.
Instead of analyzing agivenP system, the problem is tofindan interesting P system that
then can be analysed, for example by simulation studies. This is particularly interesting
in the application of P systems to biochemical systems. To this extent, public databases
on the internet can be used that store and collect information about biochemical reac-
tions. These include WIT, EcoCyc, MetaCyc [19], aMAZE and KEGG [18]. We will
only consider the LIGAND database here [14], which is a particular database inside

Applications of Page Ranking in P Systems 321

the KEGG repository. As of version 42.0, LIGAND contains information about 15053
chemical compounds (KEGG COMPOUND), 7522 biochemical reacions (KEGG RE-
ACTION) and 4975 enzymes (KEGG ENZYME) in ASCII text files that are easily
parseable by computer.

In the usual approach [10, 28] one constructs anundirectedmetabolite network graph
G = (V, E) from these files, where nodes represent compounds, and edgesrepresent
reactions (for simplicity, we do not consider enzymes here). Two compoundsu, v ∈ V
in the metabolite graph are connected by an arc(u, v) ∈ E ⊆ V 2 if there exists a
reaction in which bothu andv participate. Note thatu andv can both occur on the
same side of a reaction, in contrast to what we have done for P system object networks,
resulting in an undirected as opposed to a directed graph. The main problem considered
in the bioinformatics community is the extraction of (meaningful) possible pathways
that allow to transform one compounds ∈ V into a target compoundt ∈ V , which is
equivalent to thek shortest path problem[11].

A particular problem with this approach is the existence of so-calledcurrencymetabo-
lites [16]. These are usually small biomolecules that participate in a large number of
reactions, and are used to store and transfer energy and/or certain ions. Examples of
currency metabolites includeH2O, ATP, andNADH. Because of them, for example,
there exist more than 500000 distinct pathways of length at most nine between glucose
and pyruvate [22], most of which are not biochemically feasible. The solution con-
sidered by Croes and co-workers is to weight the paths by the (out-) degrees of their
vertices, such that vertices with a large degree are punished relative to compounds with
a higher specifity, i.e. a lower degree [10].

Here we propose to use adirectedmetabolite graph that more realistically captures the
flow constraints of the biochemical reaction network, and touse the stationary distri-
bution of such a biochemical object network to weight the paths. Currency metabolites
are expected to have a large stationary probability, since they partake in many circular
reaction patterns, and interesting pathways should then befound more effectively by
bounding the total path weight.

We shall demonstrate this here by way of a simple example.

Example 7 Consider the network graph in the left panel of Figure 7.3. This has been
generated by starting at Caffeine (C007481) in the KEGG COMPOUND database. All
paths of length at most 2 have been generated, and the resulting graph has been pruned,
such that no leaves remains (i.e. such that no vertices remain with only one arc). The
resulting network is shown in Figure 7.3 on the right. From this, the stoichiometric net-
work graph on the left has been created. For each pair of compounds(u, v) ∈ V , we sum
over the contributions to the stoichiometry from all rules.These weights are then nor-
malized, such that they can be interpreted as transition probabilities, and are displayed
in the left figure. The stationary eigenvector (usingα = 0.01) of the stoichiometric

322 Applications of Page Ranking in P Systems

C00067
Formaldehyde

C07130
Theophylline

1

C07480
Theobromine

0.8

C07481
Caffeine

0.2

0.5

0.1666670.166667

C13747
1,7-Dimethylxanthine

0.166667

0.8

0.2

C00067
Formaldehyde

C07130
Theophylline

R07973

1

R07974

1

R07975

1

R07976

1

C07480
Theobromine

R07920

1

R07961

1

R07962

1

R07963

1

R07964

1

C07481
Caffeine

R07939

1

R07954

1

R07955

1

R07956

1

R07971

1

R07972

1

C13747
1,7-Dimethylxanthine

R07921

1

R07957

1

R07958

1

R07959

1

R07960

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1 1 11

1

1

1

1

1 1 11

Fig. 7.3 Normalized stoichiometric network graph (left panel) for Caffeine example in the text.
The right panel shows the underlying reaction network in a (place-transition) Petri net represen-
tation, where boxes correspond to distinct chemical reactions.

ranking matrix is
p = (0.487, 0.122, 0.122, 0.146, 0.122)t,

corresponding to the compounds

(C00067, C07130, C07480, C07481, C13747),

and we see that Formaldehyde (C00067) qualifies as a currencycompound. In KEGG
REACTION there are 57 reactions in which it participates, infact. Note that the stoi-
chiometric network graph where paths of length up to three are allowed cannot be drawn
sensibly anymore, since it already contains 58 vertices, many of which are due to reac-
tions with Formaldehyde. The invariant distribution can becalculated easily, however.

P systems identification is then possible by first generatinga large stoichiometric net-
work graph, calculating its invariant distributionp ∈ RN

+ , and using its componentspi,
1 ≤ i ≤ N , to define weightsN · pi for a second pathway search (the constantN is
used to ensure that the average weight is one). Only compounds encountered on paths
with a weight below a certain, user-defined threshold are then used to define a P system
model that captures the (hopefully) relevant biochemical reactions.

8 Discussion

In this paper we have shown some applications of page rankingto the analysis and
identification of P systems. Dynamical P systems can be considered Markov chains, and
Google’s page ranking then corresponds to the stationary eigenvector of the transition

Applications of Page Ranking in P Systems 323

matrix, after adding a small positive constant to ensure irreducibility and aperiodicity.
For P systems, page ranking allows to define a probability distribution on the objects
(and, dually, also on the rules), and this in turn allows to define the entropy of a P
system, generalizing ideas of [9]. A different applicationhas been in the identification
of P system models from biochemical databases. There, the invariant distribution should
allow to search more effectively for pathways, improving the degree weights introduced
by Croes and co-workers. Although the complete stoichiometric graph available in the
LIGAND database is quite large (more than 10000 vertices), the eigenvector calculation
has to be done only once. The test of this idea is underway.

We have also presented some interesting problems and directions for future work. Lastly,
let us remark that it is possible to generalize the page ranking approach to systems
with an infinite state space (by normalizing theaveragepage rank, and not the sum
of all ranks). This should be especially interesting for theanalysis of (pseudo-) lattice
digraphs, being a continuation of the work in [27]. More generally, this work was mo-
tivated by the urge to adapt the methods of dynamical systemstheory to P systems,
and from this perspective the invariant distribution of a P system can be considered to
represent the asymptotical dynamical behavior of a given system. In particular, we can
now give operational definitions of the concept of “stable fixed points” for P systems
as states with a large invariant probability, whereas “transient” states will have a very
small invariant probability (on the order ofα).

Acknowledgements. This work has been supported by the Dutch Science Foundation
(NWO) under grant no. 635.100.006.

Bibliography

[1] Altman, A., Tennenholtz., M.: Ranking systems: the PageRank axioms. Electronic
Commerce, Proceedings of the 6th ACM conference on Electronic commerce
(2005) 1–8

[2] Badii, R., Politi, A.: Complexity. Hierarchical structures and scaling in physics.
Cambridge University Press (1997)

[3] Bapat, R. B., Raghavan, T. E. S.:Nonnegative Matrices and Applications.Cam-
bridge University Press (1997)

[4] Bianco, L., Fontana, F., Manca, V.: P systems with reaction maps. Int. J. Found.
Comp. Sci.17 (2006) 3–26

[5] Brémaud, P.:Markov Chains. Gibbs Fields, Monte Carlo Simulation, and Queues.
Springer-Verlag (1999)

[6] Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems30 (1998) 107–117

[7] Chakrabarti, D., Faloutsos, C.: Graph Mining: Laws, Generators, and Algorithms.
ACM Computing Surveys38 (2006) 1–69

324 Applications of Page Ranking in P Systems

[8] Ciobanu, G., Păun, G., Pérez-Jiménez, M.-J. (Eds.)Applications of Membrane
Computing. Springer-Verlag (2006)

[9] Cordón-Franco, A., Sancho-Caparrini, F.: A note on complexity measures for
probabilistic P systems. Journal of Universal Computer Science10 (2004) 559–
568

[10] Croes, D., Couche, F., Wodak, S. J., van Helden, J.: Inferring Meaningful Pathways
in Weighted Metabolic Networks. J. Mol. Bio.356(2006) 222–236

[11] Epstein, D.: Finding thek Shortest Paths. SIAM J. Comput.28 (1998) 652–673
[12] Golub, G. H., Van Loan, C. F.:Matrix Computations.Johns Hopkins University

Press (1996)
[13] Google: Google Technology,http://www.google.com/technology/
[14] Goto, S., Nishioka, T., Kanehisa, M.: LIGAND: chemicaldatabase for enzyme

reactions. Bioinformatics14 (1998) 591–599
[15] Heinrich, R., Schuster, S.:The Regulation of Cellular Systems.Springer-Verlag

(1996)
[16] Huss, M., Holme, P.: Currency and commodity metabolites: their identification

and relation to the modularity of metabolic networks. IET Syst. Biol. 1 (2007)
280–285

[17] Kamvar, S., Haveliwala, T., Golub, G.: Adaptive methods for the computation of
PageRank. Linear Algebra Appl.386(2004) 51–65

[18] Kanehisa, M., Araki, M., Goto, S., Hattori, M., et al.: KEGG for linking genomes
to life and the environment. Nucleic Acids Research36(2008) D380–D484. URL:
http://www.genome.jp/kegg/

[19] Karp, P. D., Riley, M., Saier, M., Paulsen, I. T., et al.:The EcoCyc and MetaCyc
databases. Nucleic Acids Research28(2000) 56–59. URL:http://metacyc.
org/ andhttp://biocyc.org/

[20] Kauffman, K. J., Prakash, P., Edwards, J. S.: Advances in flux balance analysis.
Current Opinion in Biotechnology14 (2003) 491–496

[21] Klipp, E., Herwig, R., Kowald, A., Wierling, C., et al.:Systems Biology in Prac-
tice. Wiley-VCH (2005)

[22] Kuffner, R., Zimmer, R., Lengauer, T.: Pathway analysis in metabolic databases
via differential metabolic display (DMD). Bioinformatics16 (2000) 825–836

[23] Langville, A. N., Meyer, C. D.: Deeper inside PageRank.Internet Math.1 (2004)
335–380

[24] Ma, N., Guan, J., Zhao, Y.: Bringing PageRank to the citation analysis. Informa-
tion Processing & Management44 (2008) 800–810

[25] Manca, V., L. Bianco, L.: Biological networks in metabolic P systems. BioSystems
91 (2008) 489–498

[26] Muskulus, M. Identification of P system models assistedby biochemical databases.
In: Ibarra, O. H., Sosı́k, P. (Eds.) Prague International Workshop on Membrane
Computing, Preliminary proceedings, Silesian Universityin Opava, Faculty of
Philosophy and Science (2008) 46–49

[27] Muskulus, M., Besozzi, D., Brijder, R., Cazzaniga, P.,et al.: Cycles and communi-
cating classes in membrane systems and molecular dynamics.Theor. Comp. Sci.

Applications of Page Ranking in P Systems 325

372(2007) 242–266
[28] Noirel, J., Ow, S. Y., Sanguinetti, G., Jaramillo, A., et al.: Automated extraction of

meaningful pathways from quantitative proteomics data. Briefings in Functional
Genomics and Proteomics (2008), in press

[29] Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
Bringing order to the web. Technical Report, Stanford University (1998). Available
from: http://dbpubs.stanford.edu:8090/pub/1999-66

[30] Păun, G.: Computing with Membranes. J. Comput. Syst. Sci. 61 (2000) 108–143
[31] Păun, G.:Membrane computing. An Introduction.Springer–Verlag (2002)
[32] Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical Probabilistic P Sys-

tems. Int. J. Found. Comp. Sci.17 (2006) 183–204
[33] Romero-Campero, F. J., Pérez-Jimémenz, M. J.: Modelling gene expression con-

trol using P systems: The Lac Operon, a case study. Biosystems91(2008) 438–457
[34] Vise, D., Malseed, M.:The Google Story.Random House (2006).

An algorithm for nondeterministic
object distribution in P systems and
its implementation in hardware

———————————————
Van Nguyen, David Kearney, Gianpaolo Gioiosa

University of South Australia, School of Computer and Information Science,
Mawson Lakes Boulevard, Adelaide, 5095, Australia
{Van.Nguyen, David.Kearney, Gianpaolo.Gioiosa }@unisa.edu.au

We have recently developed a prototype hardware implementation of membrane
computing using reconfigurable computing technology. Thisprototype, called
Reconfig-P, exhibits a good balance of performance, flexibility and scalability.
However, it does not yet implement nondeterministic objectdistribution. One of
our goals is to incorporate nondeterministic object distribution into Reconfig-
P without compromising too significantly its performance, flexibility or scal-
ability. In this paper, we (a) propose an algorithm for nondeterministic object
distribution in P systems, and (b) describe and evaluate a prototype hardware
implementation of this algorithm based on reconfigurable computing techno-
logy. The results of our evaluation of the prototype implementation show that
our proposed algorithm can be efficiently implemented usingreconfigurable
computing technology. Therefore there is strong evidence that it is feasible to
incorporate nondeterministic object distribution into Reconfig-P as desired.

1 Introduction

We have recently developed a prototype hardware implementation of membrane compu-
ting using reconfigurable computing technology. This prototype, called Reconfig-P, ex-
hibits a good balance of performance, flexibility and scalability. However, it does not
yet implement nondeterministic object distribution. One of our goals is to incorporate
nondeterministic object distribution into Reconfig-P without compromising too signif-
icantly its performance, flexibility or scalability. In this paper, we (a) propose an algo-
rithm for nondeterministic object distribution in P systems, and (b) describe and eval-
uate a prototype hardware implementation of this algorithmbased on reconfigurable
computing technology. The results of our evaluation of the prototype implementation
show that our proposed algorithm can be efficiently implemented using reconfigurable
computing technology. Therefore there is strong evidence that it is feasible to incorpo-
rate nondeterministic object distribution into Reconfig-Pas desired.

328 An algorithm for nondeterministic object distribution in P systems

The contents of the paper are as follows. In Section 2, we discuss the background to
the research problem. In Section 3, we state the research problem. In Section 4, we
present and explain our proposed algorithm for nondeterministic object distribution in
P systems. In Section 5, we evaluate the correctness and theoretical efficiency of the
algorithm. In Section 6, we describe our prototype hardwareimplementation of the al-
gorithm. In Section 7, we present and discuss empirical results related to the efficiency
of the prototype implementation. Finally, in Section 8, we draw some conclusions re-
garding the significance of our research results.

2 Background

In this section, we present the background to the problem that motivates the research
described in this paper. First, we present a brief overview of membrane computing.
Second, we present formal definitions of nondeterminism andmaximal parallelism in
the context of object distribution in P systems. Third, we discuss our overall research
program, which thus far has produced a prototype hardware-based computing platform
for membrane computing called Reconfig-P. Finally, we introduce the reconfigurable
computing technology used in Reconfig-P.

2.1 Membrane computing Membrane computing is a branch of bio-inspired compu-
ting. It investigates models of computation inspired by certain structural and functional
features of biological cells, especially features that arise because of the presence and ac-
tivity of biological membranes. There are several types of membrane computing models.
These include cell-like models, tissue-like models and neural models. As many of the
fundamental features of membrane computing models are present in cell-like models,
we focus on cell-like models in our research.

Biological membranes define compartments inside a cell or separate a cell from its
environment. The compartments of a cell contain chemical substances. The substances
within a compartment may react with each other or be selectively transported through
the membrane surrounding the compartment (e.g., through protein channels) to another
compartment as part of the cell’s complex operations.

In a membrane computing model, called aP system, multisets of objects (chemical sub-
stances) are placed in the regions defined by a hierarchical membrane structure, and the
objects evolve by means of reaction rules (chemical reactions) also associated with the
regions. The reaction rules are applied in a maximally parallel, nondeterministic man-
ner (in a sense to be defined below). The objects can interact with other objects inside
the same region or pass through the membrane surrounding theregion to neighbouring
regions or the cell’s environment. These characteristics are used to define transitions
between configurations of the system, and sequences of transitions are used to define
computations. A computation halts when for every region it is not possible to apply any
reaction rule.

An algorithm for nondeterministic object distribution in P systems 329

Fig. 2.1 (a) A P system with one region and four reaction rules, and (b)a list of the possible ways
in which the reaction rules in the P system can be applied in the current transition given that they
must be applied in a maximally parallel manner.

For more information about the fundamentals of membrane computing, we refer the
reader to [6].

2.2 Nondeterministic, maximally parallel application of reaction rules in P sys-
tems Nondeterminism and maximal parallelism are key features ofP systems. We
define these features below, first informally and then formally.

Definition of maximal parallelism In a transition of a P system, if any reaction rule
can be applied, itmustbe applied. That is, in a transition, if a reaction rule is able to
consume a multiset of objects that have not been consumed by other reaction rules, then
it must consume that multiset of objects. This is themaximal parallelismproperty of P
systems.

Figure 2.1 shows an example P system, and lists the possible ways in which the reaction
rules in the P system’s only region can be applied given that they must be applied in
a maximally parallel manner. The actual way in which the reaction rules are applied
is selected nondeterministically (in a sense to be defined below) from this range of
possibilities.

Suppose that zero instances ofR1, one instance ofR2, one instance ofR3 and one in-
stance ofR4 were to be applied in the current transition. This wouldnotbe a maximally
parallel application of the reaction rules. This is because, after the application of the
reaction rules, the multiset of objects remaining in the region would have beena5b5c2,
in which case an additional instance ofR3 could have been applied.

Note that the case in which the number of instances for each reaction rule in a region is
zero is regarded as an application of the reaction rules.

330 An algorithm for nondeterministic object distribution in P systems

Definition of nondeterminism As illustrated in Figure 2.1, when the reaction rules in
a region are applied in a maximally parallel manner during a transition, there are often
multiple ways in which the objects in the region can be distributed to the reaction rules.
(For instance, in the current transition of the P system depicted in Figure 2.1, the ob-
jects can be distributed in eleven different ways, so there are eleven possible maximally
parallel applications of the reaction rules.) If the maximally parallel application that
actually occurs is selected from this range of possibilities at random, we say that the
application isnondeterministic. Otherwise, we say that the application isdeterministic.

Formal definitions We now present formal definitions of maximal parallelism and
nondeterminism.

Let then ≥ 1 reaction rules in a region of a P system be:

R1: oa11
1 oa21

2 ... oam1
m → ...

R2: oa12
1 oa22

2 ... oam2
m → ...

. ...

Rn: oa1n

1 oa2n

2 ... oamn
m → ...,

whereo1, o2, ...,om are the object types in the P system, and eachaij (1 ≤ i ≤ m, 1 ≤
j ≤ n) is a nonnegative integer. Let the multiset of objects available in the region be
ob1
1 ob2

2 ...obm
m , where eachbi (1 ≤ i ≤ m) is a nonnegative integer. And letx1, x2, ...,xn

denote the numbers of instances of the reaction rulesR1, R2, ...,Rn, respectively, to be
applied in the current transition.

Suppose that then reaction rules in the region are applied during a transition. As it is
not possible to consume more objects of a given type than are initially available, each
of the following conditions must be satisfied:

a11x1 + a12x2 + ... +a1nxn ≤ b1

a21x1 + a22x2 + ... +a2nxn ≤ b2

. ...

am1x1 + am2x2 + ... +amnxn ≤ bm

Definition of maximal parallelismLet s = (s1, s2, ..., sn) be a solution to the linear
system of inequalities given above, wheres1, s2, ..., sn are nonnegative integers. This
solution represents values ofx1, x2, ..., xn for which all of the inequalities in the lin-

An algorithm for nondeterministic object distribution in P systems 331

ear system hold. Thens corresponds to a maximally parallel application of the reaction
rulesR1, R2, ...,Rn if and only if the solutionv = (v1, v2, ..., vn) (wherev1, v2, ..., vn

are nonnegative integers) of the linear system

a11x1 + a12x2 + ... +a1nxn ≤ b′1

a21x1 + a22x2 + ... +a2nxn ≤ b′2

. ...

am1x1 + am2x2 + ... +amnxn ≤ b′m,

where

b′1 = b1 − a11s1 − a12s2 − ...− a1nsn

b′2 = b2 − a21s1 − a22s2 − ...− a2nsn

b′m = bm − am1s1 − am2s2 − ...− amnsn

is such thatv is the zero vector.

(Note that ifv1, v2, ..., vn were real numbers rather than integers, we would have that
each of these values is greater than or equal to zero and less than 1.)

Definition of nondeterminismThere arep ≥ 0 possible values fors. If the value fors is
selected at random from this range ofp possibilities, thens corresponds to a nondeter-
ministic maximally parallel application of the reaction rules. Otherwise, it corresponds
to a deterministic maximally parallel application of the reaction rules.

2.3 Our overall research program To exploit the performance advantage of the
large-scale parallelism of P systems, it is necessary to execute them on a parallel compu-
ting platform. To this end, researchers have investigated parallel computing platforms
for membrane computing, including platforms based on software (see, e.g., [1]) and
platforms based on hardware (see, e.g., [4], [5] and [7]).

Our overall research program is focused on hardware-based parallel computing plat-
forms for membrane computing. Hardware-based parallel computing platforms execute
algorithms that have been directly implemented in hardware. The hardware platform im-
plements the algorithm in terms of the parallel activities of a certain number of proces-
sors that are spatially, rather than temporally, related. The ability to use parallel proces-
sors brings a potentially very significant improvement in execution time performance.
However, the use of the spatial dimension means that the number of processors, and

332 An algorithm for nondeterministic object distribution in P systems

therefore the class of algorithms, that can be implemented on the platform is constrained
by the amount of hardware resources available on the platform.

Our research involves an investigation of a certain novel approach to the development
of a parallel computing platform for membrane computing. This approach involves the
use of reconfigurable hardware and an intelligent software component that is able to
configure the hardware to suit the specific properties of the Psystem to be executed.
We have developed a prototype computing platform called Reconfig-P based on the ap-
proach [4] [5]. Reconfig-P is currently able to execute P systems that are the same as
basic cell-like P systems, except that objects are distributed to reaction rules in a deter-
ministic (rather than a nondeterministic) manner. It is thefirst hardware-based parallel
computing platform for membrane computing to implement parallelism at both the sys-
tem and region levels, and is one of the most complete hardware implementations of
membrane computing published to date.

The implementation approach on which Reconfig-P is based involves

• use of a reconfigurable hardware platform,
• generation of a customised digital circuit for each P systemto be executed, and
• use of a hardware description language that allows digital circuits to be specified at

a level of abstraction similar to the level of abstraction atwhich a general-purpose
procedural software programming language (such as C) allows algorithms to be
specified.

In the approach, a software component of the computing platform is responsible for
analysing the structural and behavioural features of the P system to be executed and
producing a hardware description for the P system that is tailored to these features.
When determining the hardware description for the P system,the software component
aims to maximise performance and minimise hardware resource consumption. The em-
pirical results presented in [4] show that for a variety of P systems Reconfig-P achieves
very good performance while making economical use of hardware resources.

The natural next step in the development of Reconfig-P is to attempt to incorporate non-
deterministic object distribution into Reconfig-P. Although it is quite clear that support-
ing nondeterminism will result in higher hardware resourceconsumption and a degra-
dation in execution time performance, it is unknown just howefficient an implementa-
tion of nondeterministic object distribution could be madeto be. Therefore, despite the
positive results mentioned above, it is unknown whether nondeterministic object distri-
bution could be incorporated into Reconfig-P without compromising too significantly
its performance, flexibility and scalability.

2.4 Reconfigurable computing technology As already mentioned, hardware-based
computing platforms execute algorithms that have been directly implemented in hard-
ware. In one approach, an application-specific integrated circuit (ASIC) is used. The

An algorithm for nondeterministic object distribution in P systems 333

Fig. 2.2 An FPGA chip with different types of memory.

design of an ASIC is tailored to a specific algorithm. As a consequence, ASICs usu-
ally achieve a higher performance than software-programmed microprocessors when
executing the algorithm for which they were designed. However, with this higher per-
formance comes reduced flexibility: as the implemented algorithm is fabricated on a
silicon chip, it cannot be altered without creating anotherchip. In another approach,
reconfigurable hardware is used. Unlike ASICs, reconfigurable hardware can be modi-
fied. Therefore, by using reconfigurable hardware, it is possible to improve on the per-
formance of software-based computing platforms while retaining some of their flexi-
bility. The computing paradigm based on the use of reconfigurable hardware is known
as reconfigurable computing. We now briefly introduce the reconfigurable computing
technology used in Reconfig-P.

FPGAs A field-programmable gate array (FPGA) is a type of reconfigurable hardware
device. A standard FPGA consists of a matrix of configurable logic blocks (CLBs). The
CLBs are connected by means of a network of wires. They can be used to implement
logic or memory. Each CLB is composed of a number of slices, each of which consists
of two four-input lookup tables (LUTs), two flip-flops and some internal logic (e.g.,
carry logic used in the implementation of arithmetical operations). The LUTs can be
used to implement logic gates or small memories. The flip-flops can be used to create
state machines. The CLBs at the periphery of the FPGA can perform I/O operations.
The functionality of the CLBs and their interconnections can be modified by loading
configuration data from a host computer. In this way, any custom digital circuit can be
mapped onto the FPGA, thereby enabling the FPGA to execute a variety of applications.

Figure 2.2 shows an FPGA chip with different types of memory.

Handel-C Digital circuits are specified in hardware description languages. A popular
high-level hardware description language is Handel-C. Handel-C allows a hardware cir-

334 An algorithm for nondeterministic object distribution in P systems

cuit to be specified at the algorithmic level rather than at a level at which the structure
of the circuit is apparent, and therefore eases the process of designing a circuit for an
application. Handel-C includes a small subset of the C programming language as well
as additional constructs for the configuration of a hardwaredevice, including constructs
related to parallelism, communication, timing and bit manipulation. Every Handel-C
statement takes exactly one clock cycle to execute. Therefore it is relatively easy for
programmers to measure the number of clock cycles that it takes to execute a particular
algorithm on the hardware device. In terms of data storage, Handel-C provides several
options, including arrays, on-chip distributed RAMs, on-chip dedicated RAMs and off-
chip RAMs. Each of the storage options has its own benefits anddrawbacks, depending
on the specific data to be stored. We discuss the storage options below.

Data storage

Arrays An array in Handel-C is a collection of individual registers, each of which is
implemented directly as one or more flip-flops. An element of an array may be used
exactly like an individual register (by means of an index into the array) and therefore all
elements of the array can be accessed in parallel. However, this is achieved by means
of a multiplexer between the registers, which can be expensive to implement, both in
terms of the hardware resources required and in terms of the logic delay induced.

On-chip distributed RAMs The LUTs in CLBs can be configured to operate as 16
× 1 RAMs (i.e., 16-deep, 1-bit-wide RAMs). In this way, RAMs can be placed at arbi-
trary locations on the chip. These RAMs are calleddistributed RAMs. In terms of the
hardware resources required, a distributed RAM is more efficient to implement than an
array, because there is no switching between the various RAMs and therefore no need
for a multiplexer. However, this efficiency comes at a cost: only one entry of a dis-
tributed RAM can be accessed in any one clock cycle, and therefore distributed RAMs
are unsuitable in situations where concurrent access to different entries in a RAM is
required.

On-chip block RAMs To complement the shallow distributed RAMs that are im-
plemented in CLBs, some FPGAs provide dedicated RAMs known as block RAMsor
BRAMs, which allow for on-chip storage of kilobits of data. Block RAMs are set aside
for use as memory, and cannot be used for any other purpose. Therefore, using block
RAMs instead of distributed RAMs for on-chip data storage allows one to dedicate
more of the configurable hardware resources on the FPGA to theimplementation of
processing logic. However, using block RAMs has three main disadvantages. First, a
block RAM has greater access latency than a distributed RAM,and therefore the use
of block RAMs instead of distributed RAMs can result in a slower circuit. Second,
because block RAMs have fixed locations, the use of block RAMsreduces the routing

An algorithm for nondeterministic object distribution in P systems 335

options available to the compiler, and consequently may result in greater routing delays.
Third, although a single block RAM holds a large amount of data, the number of block
RAMs available on an FPGA is limited. This limits the amount of parallelism across
data structures implemented as block RAMs. Block RAMs are suitable in situations
where a large amount of data needs to be stored on the chip and where each block RAM
is not accessed from many locations on the chip.

Off-chip RAMs In addition to allowing data to be stored on the chip, some FPGAs
allow data to be stored in RAMs located off the chip. These RAMs, calledoff-chip
RAMs, provide for the storage of megabytes of data. However, there is a higher latency
associated with accessing an off-chip RAM than with accessing an on-chip RAM, and
off-chip RAMs allow only one read or write access per clock cycle.

3 Research problem

The problem that motivates the research described in this paper is (a) to devise an effi-
cient algorithm for nondeterministic object distributionin P systems, and (b) to develop
and evaluate the efficiency of a prototype hardware implementation (based on reconfig-
urable computing technology) of the devised algorithm.

This research problem fits into our overall research program, which is aimed at the de-
velopment of a complete hardware implementation of basic cell-like P systems which
effectively balances the requirements of performance, flexibility and scalability. In par-
ticular, the extent to which the problem can be solved is directly relevant to the question
of the feasibility of incorporating an implementation of nondeterministic object distri-
bution into Reconfig-P, our existing hardware implementation of membrane computing.

4 An algorithm for nondeterministic, maximally parallel object
distribution in P systems

In this section, we propose an algorithm for nondeterministic, maximally parallel object
distribution in P systems.

In order to indicate some of the important issues that were negotiated during the de-
velopment of the proposed algorithm, and in order to facilitate a comparison of our
algorithm with possible alternative algorithms, we present and discuss our algorithm
in the context of a wider discussion of the main potential strategies for the solution of
the nondeterministic, maximally parallel object distribution problem (henceforth to be
referred to as theobject distribution problem).

336 An algorithm for nondeterministic object distribution in P systems

4.5 Potential approaches Fundamentally, any effective approach to the object dis-
tribution problem must (a) consider a certain space of possible solutions which contains
all of the solutions to the object distribution problem, (b) be able to correctly distinguish
(either explicitly or implicitly) between solutions and non-solutions within this space of
possible solutions, (c) randomly select a solution in such away that all solutions have
the same nonzero probability of being selected, and (d) output a solution in a timely
manner.

Approaches may differ with respect to the size of the space ofpossible solutions that is
considered. Some approaches may involve an explicit determination of the boundaries
of the space of possible solutions to be considered, whereasother approaches may be
designed in such a way that an explicit determination is not required.

Approaches may also differ with respect to the way in which they navigate the space of
possible solutions. Some approaches are designed in such a way that all non-solutions
are avoided, so that only solutions are considered during the navigation of the space of
possible solutions. We call such approachesdirect approaches. Other approaches con-
sider both solutions and non-solutions during the navigation. We call such approaches
indirect approaches.

To fulfil requirement (c), an approach obviously requires one or more sources of ran-
domness.

4.6 Indirect approaches

Indirect straightforward approachThe indirect straightforward approachis to simply
enumerate all the possible solutions to the object distribution problem that are contained
in a certain space of possible solutions (which is known to contain all the solutions to
the object distribution problem), and then pick possible solutions at random, checking
whether they are actually solutions, until a solution is found.

The indirect straightforward approach considers both non-solutions and solutions as
it navigates the space of possible solutions. More specifically, it considers a number
of non-solutions before it finds a solution. The algorithm eliminates only one possible
solution at a time. The first solution to be found is the solution that is output.

The designers of an algorithm for the solution of the object distribution problem should
regard the efficiency of the indirect straightforward approach as a baseline efficiency,
and aim for an efficiency significantly higher than this baseline efficiency.

Incremental approachNondeterministic, maximally parallel distribution of objects to
reaction rules is perhaps most intuitively implemented in an incremental manner. In the
incremental approach, the distribution of objects to a particular reaction rule is accom-
plished in rounds; that is, a reaction rule may potentially be processed many times. It

An algorithm for nondeterministic object distribution in P systems 337

is an indirect approach. Martinez, Fernandez, Arroyo and Gutierrez (2007) have pro-
posed an incremental algorithm for nondeterministic, maximally parallel distribution of
objects to reaction rules. This algorithm has significantlybetter efficiency than the indi-
rect straightforward approach. We now describe the algorithm in order to illustrate the
fundamental features of the incremental approach.

In the incremental approach, those reaction rules to which it is possible that objects will
be distributed are placed in apool. Initially, all of the reaction rules are in the pool.
During the course of the object distribution process, reaction rules are removed from
the pool. At any given time, the reaction rules in the pool arethose that are still under
consideration, whereas the reaction rules out of the pool are no longer under consider-
ation. In each iteration, one of the reaction rules in the pool is selected at random, and
its number of instances is incremented by a random amount (such that the total num-
ber of instances of the reaction rule does not exceed its maximum possible number of
instances given the multiplicities of the object types in the region). The multiplicities of
the object types in the region are then updated (decreased) according to the number of
instances of the reaction rule added in the previous step. Atthis point the applicability
of each of the reaction rules in the pool (given the updated multiplicity values) is che-
cked. If it is impossible for there to be additional instances of a particular reaction rule,
then that reaction rule is removed from the pool; otherwise,it remains in the pool. The
process repeats until there are no more reaction rules in thepool.

Like the indirect straightforward approach, the incremental approach considers a num-
ber of non-solutions before it finds a solution, and outputs the first solution it finds.
Unlike the indirect straightforward approach, it may eliminate more than one possible
solution at a time (i.e., in a round). As it is impossible for the number of instances of a
reaction rule to decrease, at any given time all possible solutions for which the number
of instances of any reaction rule is less than the current value for the number of instances
of that reaction rule is no longer under consideration. Therefore, in general, the incre-
mental approach converges on a solution more quickly than the indirect straightforward
approach.

This approach can be more efficient for many applications. However, the efficiency of
the incremental approach depends on the random number of instances that is added
to the current number of instances of the selected reaction rule at each iteration. If the
random numbers generated are small, the approach can take many iterations to distribute
the objects to the reaction rules. This is particularly truewhen there is a large number
of applicable reaction rules in the region and the number of available objects for each
object type is large.

It might be more desirable, particularly from the point of view of efficiency, to deter-
mine the final number of instances of a reaction rule directlyrather than indirectly. In
a direct approach, the distribution of objects to a particular reaction rule occurs in one
step. To the best of our knowledge, no instances of the directapproach to the implemen-
tation of nondeterministic, maximally parallel object distribution have been reported in

338 An algorithm for nondeterministic object distribution in P systems

the literature. This is a reflection of the general lack of research done so far on im-
plementations of nondeterministic, maximally parallel object distribution, and does not
suggest that the direct approach is infeasible. We now describe two direct approaches:
thedirect straightforward approachand our own proposed algorithm.

4.7 Direct approaches

Direct straightforward approachIn thedirect straightforward approach, all the solu-
tions to the object distribution problem are given as input,and one of these solutions
is simply selected at random. This would be a feasible approach if the multiplicity of
each object type in the region were static. In that case, all the possible solutions could
be calculated at compile-time, and one of these solutions could be randomly selected
at run-time during each transition of the P system. However,given that the multiplici-
ties of the object types in the region change throughout the execution of the P system,
the approach is infeasible, mainly because of the large amount of time and hardware
resources required for the calculation of all the possible solutions at run-time.

Our proposed approach: the DND algorithmWe have devised an algorithm for nonde-
terministic, maximally parallel object distribution in P systems. Our algorithm, which
we call theDirect Nondeterministic Distribution algorithmorDND algorithm, performs
the distribution of objects to a reaction rule in one step (with a possible adjustment step
performed before the termination of the algorithm), finds a solution without needing to
enumerate possible solutions, and is able to operate without being explicitly aware of
many of the characteristics of the space of possible solutions. We now describe how the
DND algorithm works.

As shown in Section 2.2, the number of objects available in the region in the current
transition and the number of objects for each object type required by each reaction rule
can naturally be represented as a linear system of inequalities. If the number of reaction
rules isn, then the linear system, if interpreted geometrically, defines ann-dimensional
space. This space is the space bounded by the hyperplanes defined by then inequalities
(taken as equations) of the linear system. The possible maximally parallel applications
of the reaction rules correspond to certain points within the space. Our approach selects
one of these points at random in a direct manner: the random value for each coordinate
of the point is determined in one step (plus a possible additional adjustment step in
which the value is confirmed or adjusted).

Under the geometric interpretation, each reaction rule corresponds to one of then di-
mensions of space. The point closest to the origin at which a hyperplane intersects the
axis for a dimension is the least upper bound (boundary value) for the number of instan-
ces of the reaction rule associated with the dimension. Thisboundary value is simply
the minimum ratio of all the ratios of the number of availableobjects for an object type
and the number of objects of that object type required by the reaction rule.

An algorithm for nondeterministic object distribution in P systems 339

procedure obtainASolutionNondeterministically (
. m: number of object types required by a reaction rule
. n: number of reaction rules in the region
. A: an m×n matrix (with initially unmarked columns) used to store the coefficients
of the linear
. system
. B: an initially empty m×n matrix that contains results of calculations carried out
on A
. C: an m×1 matrix that contains the RHS constants of the linear system
. X: an n×1 matrix used to store the solution
. V: an m×1 matrix used to store accumulated sums used in the calculation of values
to be
. stored in B
. Z: a list of integer labels for columns of A (ordered according to the order in which
the columns
. of A are processed)

. Z(k): the kth element of Z

. //Forward phase
1.. for u = 1 to n

2.. Randomly select a column p from all the unmarked columns in A (1 ≤ p ≤ n).
3.. Add p to Z.

4.. if B is empty
5.. let q be the minimum value of all ci/aip . (1 ≤ i ≤ m).
6.. else
7.. let q be the minimum value of all bi(u-1)/aip . (1 ≤ i ≤ m).

8.. if p is the only unmarked column in A

9.. if q is an integer
10.. Set xp = q. End procedure.
11.. else
12.. Set xp = ⌊q⌋. Go to 22.

13.. else
14.. if q = 0
15.. Set xp = q and mark xp as final.
16.. else
17.. Randomly select r ∈ {0, 1, ..., ⌊q⌋} and set xp = r.
18.. For all i (1 ≤ i ≤ m), set vi = vi + raip .
19.. For all i (1 ≤ i ≤ m), set biu = ci – vi .
20.. Mark column p in A.

21.. end for

. //Backward phase
22.. Reset V and set vi = xZ(n)aiZ(n) for all i (1 ≤ i ≤ m).
23.. for s = n – 1 to 1

24.. if xZ(s) is not marked as final
25.. if s = 1
26.. let q’ be the minimum value of all (ci – vi)/ aiZ(1) (1 ≤ i ≤ m).
27.. else
28.. let q’ be the minimum value of all (bi(s – 1) – vi)/ aiZ(s) (1 ≤ i ≤ m).

29.. if xZ(s) 6= q’ set xZ(s) = ⌊q’⌋ .
30.. For all i (1 ≤ i ≤ m), set vi = vi + ⌊q’⌋ aiZ(s).
31.. end if
32.. end for

Fig. 4.3 Pseudocode for the DND algorithm. (For the sake of simplicity of presentation, it is
assumed that the coefficient matrix contains only nonzero values.)

340 An algorithm for nondeterministic object distribution in P systems

At the beginning of the DND algorithm, the linear system is said to haven− 1 degrees
of freedom. This is because, ifn− 1 of the dimensions have been assigned a value, the
value for the remaining dimension is fixed at a particular value (obviously dependant
on the values assigned to the other dimensions). The algorithm starts by selecting a di-
mensioni (1 ≤ i ≤ n) at random. An integer valuevi ∈ [0, β], whereβ is the boundary
value for the dimension, is then selected at random. The value of xi, the number of
instances of the reaction rule associated with dimensioni, is set tovi. The value ofxi

is provisional at this stage, unlessxi = 0, in which case the value ofxi is final. Even
if the current value ofxi is provisional, the algorithm proceeds for the time being on
the assumption that the value ofxi is final. That is, the value for dimensioni of the
random solution is assumed to be determined. (It is this factthat makes the algorithm
an instance of the direct approach to the object distribution problem.) The value ofxi is
substituted into the linear system, which results in a new linear system with one fewer
degree of freedom. This in effect removes the dimensioni from consideration and im-
plicitly changes the boundary values for the remaining dimensions. At this point, one
of the remaining dimensions — call it dimensionj — is selected at random. This di-
mension is processed in a similar manner to the previously processed dimension (i.e.,
dimensioni): xj is calculated (and regarded as provisional unlessxj = 0), xj is substi-
tuted into the linear system, and a new linear system with onefewer degree of freedom
results. The remaining dimensions are processed in a similar manner. When the last di-
mension is processed — call it dimensionk — the degree of freedom is 0. This means
that the random value for the dimension (i.e.,xk) has already been determined. Because
of the mathematical properties of the object distribution problem, it turns out thatxk is
always the floor of the boundary value for the dimension. Thisvalue is the final value
for xk, even if it is nonzero. This completes the first phase of the algorithm, which we
call theforward phase.

At the end of the forward phase, a provisional solution to theobject distribution problem
has been obtained. Eachxp value (1 ≤ p ≤ n) is the number of instances of the reaction
rule associated with dimensionp in the provisional solution. It is a key feature of the
DND algorithm that the provisional solution obtained during the forward phase is either
an actual solution or close to an actual solution that uniquely corresponds to it. If the
boundary value calculated for the last dimension to be processed in the forward phase
(i.e., dimensionk) is an integer, and each reaction rule requires at least one object of
each object type (so that the relevant coefficients in the linear system are all nonzero),
then the provisional solution is an actual solution. In thiscase, no further computation
is required, and the algorithm terminates. Otherwise, a phase of the algorithm called the
backward phasecommences. In the backward phase, the provisional solutionthat was
obtained during the forward phase is adjusted (if necessary) so that it coincides with its
corresponding actual solution.

In the backward phase, the dimensions are processed in reverse order (with respect to
the order randomly chosen in the forward phase). Dimensionk, the last dimension to
be processed in the forward phase, is skipped, because the value forxk is already final.

An algorithm for nondeterministic object distribution in P systems 341

In processing a dimensionq (q 6= k), thexr values (r 6= q) for the other dimensions
(regardless of whether they are provisional or final) are regarded as fixed (i.e., these
values are substituted as is into the linear system), andmq — the maximum value ofxq

(given the inequality associated with dimensionq in the linear system) — is determined.
The value ofxq is either confirmed (if it is the same asmq) or adjusted tomq. When the
final xp values (1 ≤ p ≤ n) for all dimensions have been determined, the final solution
to the object distribution problem has been obtained, and the algorithm terminates.

Unlike algorithms based on the incremental approach, the DND algorithm does not need
to navigate through a series of non-solutions. It is designed in such a way that it always
converges on a solution without needing to process non-solutions. In fact, it avoids the
processing of non-solutions, and exhibits no bias towards any solution, without needing
to perform any explicit reasoning about the space of possible solutions as a whole.

Pseudocode for the DND algorithm is shown in Figure 4.3.

4.8 Explanation of our proposed approach In this section, we attempt to provide
some intuition for the principles behind the operation of the DND algorithm. Again we
exploit the analogy withn-dimensional geometry.

To allow a graphical presentation, we project all the solutions to the object distribution
problem (i.e., all the possible maximally parallel applications of the reaction rules) in
n-dimensional space onto two-dimensional space using parallel coordinates. Parallel
coordinates are often used in the visualisation and analysis of data inn > 3 dimensions.
If one regards ann-dimensional datum as a point inn-dimensional space, then the
method of parallel coordinates can be explained as follows.To show a set of points in
n dimensions, a backdrop consisting ofn vertical and equally spaced parallel axes is
drawn. A point is represented as a polyline with vertices on the parallel axes, where the
position of the vertex on theith axis corresponds to theith coordinate of the point.

We use parallel coordinates in the following way. Each parallel axis corresponds to one
of thexi (1 ≤ i ≤ n) (i.e., the number of instances of the reaction rule associated with
dimensioni). There aren reaction rules, and so there aren parallel axes.

A solution to the object distribution problem corresponds to a polyline with exactly one
vertex on each parallel axis, where the position of this vertex corresponds to the number
of instances calculated for the reaction rule associated with the axis.

In Figures 4.4 and 4.5 we present two examples to show in broadoutline how the DND
algorithm works. The P system used in the examples is shown inFigure 2.1. Thus we
haven = 4. In the examples, we suppose that the random order in which the reaction
rules are to be processed isr4, r2, r3, r1. All of the solutions to the object distribution
problem for the current transition of the example P system are shown in Figure 2.1.

342 An algorithm for nondeterministic object distribution in P systems

Example 1

Initially, the linear system hasn−1 (= 3) degrees of freedom. Since in the DND algorithm, each reaction
rule is processed in only one step, the algorithm determinesthe solution (in the forward phase) inn (=
4) steps. The algorithm starts by selecting a reaction rule at random. According to our assumption, the
reaction rule that is chosen first isr4. The algorithm determines the maximum possible value (boundary
value) forx4 (i.e., the number of instances ofr4). The boundary value is determined to be 3, so the range
of values on the parallel axis associated withx4 is [0, 3]. The algorithm then selects an integer value
in this range at random. Suppose that the value it selects is 0. This means that the value ofx4 is set to
0. This provisional value ofx4 will either be equal to the final value ofx4 (if the algorithm ‘guessed’
correctly) or smaller than the final value ofx4 (if the algorithm guessed incorrectly). Consequently, all
values smaller than the provisional value are filtered out. Nevertheless, as there are no solutions to the
object distribution problem for whichx4 < 0, no solutions are eliminated, and so all of the solutions
still have a chance of being output by the algorithm (see Figure 6a). The provisional value ofx4 is
substituted into the linear system, which means that the algorithm now proceeds on the assumption that
x4 = 0. In effect r4 is no longer under consideration, and so the updated linear system now has 2
instead of 3 degrees of freedom. At this point, the algorithmselects another reaction rule at random. By
our assumption,r2 is selected. When processingr2 (see Figure 4.6b), the algorithm determines that the
updated boundary value forx2 is 2, so the range of values on the parallel axis associated with x2 is [0, 2].
Suppose that the algorithm selects 1 as the provisional value for x2. This eliminates all the solutions to
the object distribution problem for whichx2 < 1. The polylines associated with the eliminated solutions
are now shown in grey on the graph. The value ofx2 is then substituted into the linear system, effectively
removingr2 from consideration, and resulting in a new linear system with 1 degree of freedom. At this
stage, the algorithm randomly selects the reaction ruler3. When processingr3 (see Figure 4.6c), the
algorithm determines that the updated boundary value forx3 is 4. Therefore the range of values on the
parallel axis associated withr3 is [0, 4]. Suppose that the algorithm selects 1 as the provisional value
for x3. As a result, all solutions to the object distribution problem for whichx3 < 1 (that have not yet
been eliminated) are eliminated. The polylines associatedwith these eliminated solutions are now shown
in grey. The provisional value forx3 is substituted into the linear system, effectively removing r3 from
consideration, and resulting in a new linear system with 0 degrees of freedom. The algorithm now moves
on to processr1, the last remaining reaction rule. As the degree of freedom now is 0,x1 is set to be the
updated boundary value forx1, which is 1. This eliminates all the possible solutions for which x1 < 1.
Since the boundary value is an integer, no application of thefloor function is required, no backward phase
is required, and the algorithm terminates.

Thus the nondeterministically chosen solution to the object distribution problem is:x1 = 1, x2 = 1,
x3 = 1, x4 = 0. This solution corresponds to the only remaining polyline in Figure 4.6d.

Fig. 4.4 An example of the operation of the DND algorithm, in which only the forward phase is
executed.

5 Evaluation of the DND algorithm

In this section, we evaluate the correctness and theoretical time and space complexity
of the DND algorithm.

5.9 Time complexity We now compare the time complexity of the DND algorithm
with the time complexity of the incremental algorithm described in Section 4.6. In our
time complexity analysis, we make a number of simplifying assumptions. First, the
comparison is done at the conceptual/algorithmic level rather than at the implementation
level. Second, we do not take into account relatively insignificant operations performed
by the algorithms. Third, we assume, for both algorithms, that certain operations have
the same time complexity in all situations, even though in reality this time complexity

An algorithm for nondeterministic object distribution in P systems 343

Example 2

In Example 1 (see Figure 4.4), it was not necessary for the DNDalgorithm to execute the back-
ward phase. We now alter the example slightly in order to illustrate the backward phase.

Suppose that in Example 1 the algorithm had set the value ofx3 to 3 instead of to 1. In this case, all
solutions to the object distribution problem that had not yet been eliminated for whichx3 < 3 would
have been eliminated. However, since there is no solution tothe object distribution problem for which
x3 = 3, a new polyline going throughx3 = 3 needs to be introduced (see the dotted polyline in Figure
4.6e). With the value ofx3 set to 3, the boundary value calculated forx1 is 0.5 (see Figure 4.6f). Since
the value for eachxi (1 ≤ i ≤ n) must be an integer, the algorithm performs the floor function on 0.5
and therefore sets the value ofx1 to 0 (see Figure 4.6g). The fact that the boundary value for the last
processedxi value (i.e.,x1) was not an integer alerts the algorithm to the fact that it needs to execute
the backward phase. In the backward phase, the algorithm processes each of thexi values in reverse
(with respect to the order followed in the forward phase), with the exception of the lastxi value to have
been processed in the forward phase, which is skipped. In this example, the algorithm skipsx1 (leaving
its value set to 0), processesx3 (increasing its value to 4), processesx2 (leaving its value at 1), and then
finally processesx4 (leaving its value at 0). When processing anxi value, the algorithm calculates the
maximum possible value for thexi value on the supposition that the otherxi values are fixed at their
current (not necessarily final) values. For example, when processing thex3 value, it is assumed that
x4 = 0, x2 = 1 andx1 = 0. Given these constraints, the maximum possible value forx3 is 4, so the
algorithm sets the value ofx3 to 4.

The solution that is output by the algorithm in this example corresponds to the polyline shown in Figure
4.6h. Thus the nondeterministically chosen solution to theobject distribution problem is:x1 = 0,
x2 = 1, x3 = 4, x4 = 0.

Fig. 4.5 An example of the operation of the DND algorithm, in which both the forward phase
and backward phase are executed.

may vary depending on certain characteristics of the input.For example, the time taken
to find the boundary value associated with a reaction rule depends on the specific defi-
nition of the reaction rule, but in our analysis we do not takeinto account the specifics
of this definition, and so assume a fixed time complexity for the operation. Finally, we
assume that all the reaction rules in the region are applicable in the current transition.

We consider the performance of the algorithms in the best-case, average-case and worst-
case scenarios. The best-case scenario is the situation in which it so happens that as
many objects as possible are distributed to the first reaction rule to be selected, and there
are not enough objects remaining for any objects to be distributed to any of the other
reaction rules. The average-case scenario is the situationin which all reaction rules are
processed10. The worst-case scenario is the situation in which all relevant factors that
cause an increase in time complexity are in effect.

The results of the time complexity analysis are shown in Table 5.1. We now comment
on the time complexity results.

In the best case, the two algorithms have similar time complexities. However, the DND
algorithm devotes more time than the incremental algorithmto the random selection
of reaction rules. The incremental algorithm is able to detect, straight after distributing

10Note that a reaction rule may be processed without being assigned any objects.

344 An algorithm for nondeterministic object distribution in P systems

Fig. 4.6 Graphs used in the explanation of the examples presented in Figures 4.4 and 4.5.

An algorithm for nondeterministic object distribution in P systems 345

.

Definitions.

n is the number of reaction rules in the region.
tsr is the time taken to randomly select a reaction rule from a collection of reaction rules
. whose size is unknown at compile-time.
t′sr is the time taken to randomly select a reaction rule from a collection of reaction rules
. whose size is known at compile-time.
tbv is the time taken to calculate the boundary value for the number of instances of a reaction
. rule.
trv is the time taken to select a value from a range of valid valuesat random and assign this
. value to a reaction rule as its number of instances.
tu is the time taken to update the multiplicities of available object types in the region.
tcv is the time taken to check whether the current value for the number of instances of a
. reaction rule is final.
pi is the number of times reaction ruleri is processed.

q
j
i is the number of reaction rules still under consideration when reaction rulei is

. being processed in thej th iteration of the algorithm (a positive integer).

In the table below, we abbreviatetbv + trv + tu (i.e., the time taken to process a reaction rule) astpr .

Time complexities

. . . Best case. . Average case. . Worst case.

DND nt′sr + tpr + ntcv Betweenn(t′sr + tpr) n(t′sr + tpr + tu + tcv)

.algorithm. andn(t′sr + tpr + tu + tcv)

Incremental tsr + tpr + ntcv
Pn

i=1 pi(tsr + tpr
Pn

i=1 pi(tsr + tpr

.algorithm.

+
Ppi

j=1 q
j
i tcv), where +

Ppi
j=1 q

j
i tcv), where

pi, qi are relatively small pi, qi are large

Table 5.1 Time complexity analysis for the DND algorithm and incremental algorithm.

objects to the first selected reaction rule, that none of the remaining reaction rules is
able to obtain any of the remaining objects by checking in apre-definedorder the ap-
plicability of each reaction rule given the updated multiplicities of objects in the region,
and so does not need to make any further random selections of reaction rules. The DND
algorithm, on the other hand, checks the remaining reactionrules in arandomorder,
and therefore must perform one random selection per remaining reaction rule.

In the average case, in the DND algorithm, every reaction rule is processed at least once,
and possibly some of the reaction rules are subjected to an additional checking process,
during which it is determined whether the number of instances of the reaction rule

346 An algorithm for nondeterministic object distribution in P systems

should be adjusted and, if so, by how much. In the incrementalalgorithm, each reaction
rule is processedpi times and is subject to

∑pi

j=1 qj
i checking processes, during each

of which it is determined whether the number of instances of the reaction rule can be
increased. The values forpi andqi are in general of a moderate magnitude.

In the worst case, in the DND algorithm, each reaction rule isprocessed once and also
subjected to one checking process. In the incremental algorithm, the time complexity is
the same as in the average case, but the values for the constantspi andqi are in general
much larger.

The above observations suggest that the performance of the DND algorithm, at least in
terms of theoretical time complexity, is similar to that of the incremental algorithm in
the best case, clearly surpasses that of the incremental algorithm in the average case,
and significantly surpasses that of the incremental algorithm in the worst case. For the
average and worst cases, the time complexity of the DND algorithm depends onn,
whereas the time complexity of the incremental algorithm depends onn, eachpi and
eachqi (1 ≤ i ≤ n). In the average case, if thepi andqi values are small, although
the DND algorithm performs better than the incremental algorithm, the difference in
performance between the algorithms is not large (especially if n is small). However, as
thepi andqi values increase, the performance of the incremental algorithm diminishes
in comparison with the performance of the DND algorithm. In the worst case, thepi

andqi values are very large, and the performance of the DND algorithm is much better
than that of the incremental algorithm.

5.10 Space complexity Let m be the number of object types in the region andn
the number of reaction rules in the region. Both the DND algorithm and incremental
algorithm need to store (a) for each reaction rule in the region, the number of objects
of each object type required for the application of one instance of the reaction rule, and
(b) for each object type in the region, the current multiplicity of the object type. The
space complexity for these two items in both algorithms isO(mn + m). The DND
algorithm, unlike the incremental algorithm, requires an additional matrix, called the
traceback matrix(see Section 6.12), for the storage of data related to the updating of
the linear system. The traceback matrix containsmn elements. Therefore the overall
space complexity for the DND algorithm isO(2mn + m), whereas the overall space
complexity for the incremental algorithm isO(mn+m). Thus, at least at the algorithmic
level, the incremental algorithm is more efficient in terms of space consumption than
the DND algorithm.

5.11 Evaluation of the correctness of the DND algorithm A software program
written in Java has been developed in order to empirically verify the correctness of the
DND algorithm. This program is able to (a) create linear systems with random num-
bers of rows and columns and random values for the coefficients and RHS constants,
(b) generate all solutions to the object distribution problem for a given linear system,

An algorithm for nondeterministic object distribution in P systems 347

(c) generate a random solution to the object distribution problem for a given linear sys-
tem using the DND algorithm, and verify that this solution isindeed a solution, and
(d) record the sequence of random solutions to the object distribution problem for a
given linear system, determine the frequency of occurrenceof each random solution,
and compare the set of random solutions obtained with the setof all solutions.

Verification of the correctness of the results produced by the DND algorithm We have
empirically tested, using the Java program mentioned above, the correctness of the re-
sults produced by the DND algorithm. One million different randomly generated linear
systems were used as input during the testing. Both the number of rows and the number
of columns in a matrix in the linear system were limited to 20,and the value of each
coefficient and RHS constant was limited to 20. It was found that every solution output
by the DND algorithm during the testing was correct.

Verification of the ability of the DND algorithm to cover all solutions Since it might
appear that the DND algorithm takes a ‘short cut’ when findinga solution to the object
distribution problem, it is important to verify that (a) thealgorithm is able to generate
all the solutions in the solution space for an instance of theobject distribution problem,
and (b) the algorithm does not have any positive or negative bias towards any solution.
To verify these two properties of the algorithm, we have performed statistical analy-
ses of the results produced by the algorithm for various input linear systems. Figure
5.7b illustrates the coverage exhibited by the algorithm for an example input linear sys-
tem, for which there are 19 possible solutions, and where thealgorithm was executed
approximately two million times.

Verification of the sufficient randomness of the sequence of solutions output by the
DND algorithm The solutions output by the DND algorithm must be produced in
a sufficiently random manner. To investigate the ability of the algorithm to produce
solutions in a sufficiently random manner, it is necessary toanalyse the sequence of
solutions it generates when executed many times. Figure 5.7a shows the sequence of
solutions that were output by the algorithm, and the frequency of occurrence of each
solution, for a particular experiment. In this experiment,there were 56 solutions and the
algorithm was executed 560 times. The results of the experiment suggest that the DND
algorithm produces solutions in a sufficiently random manner.

6 Description of a hardware implementation of the DND
algorithm

In this section, we describe a prototype hardware implementation of the DND algorithm
that uses the reconfigurable computing technology outlinedin Section 2.4. For the pro-
totype, we used a Xilinx Virtex II FPGA. First we describe themajor data structures and

348 An algorithm for nondeterministic object distribution in P systems

Fig. 5.7 (a) The sequence of solutions output by the DND algorithm, and (b) the frequency of
occurrence of each solution, for a particular experiment.

processing units in the implementation, and show how they interact during the execu-
tion of the DND algorithm. Then we discuss the degree to whichparallelism is achieved
in the implementation. Finally, we discuss optimisations that we implemented in order
to increase the efficiency of the implementation.

In order to reduce the hardware resource consumption and increase the execution time
performance of an implementation based on reconfigurable hardware, attempts are com-
monly made to (a) tailor the design of the hardware components to the special character-
istics of the input, (b) minimise communication between hardware components, and (c)
use constants instead of variables where possible (since constants, but not variables, can
be hard-coded into the circuit). We employed these strategies during the development of
Reconfig-P, and the result was a substantial benefit in terms of hardware resource con-
sumption and execution time performance. However, the effectiveness of these strate-
gies is limited when they are applied to the implementation of nondeterministic object
distribution. As nondeterministic object distribution isan inherently uncertain process,
multiple alternative scenarios need to be accommodated. This places constraints on the
use of constants and hard-coded logic, and therefore limitsthe ability to optimise the
hardware circuit that is generated for a particular input application. In addition, the intro-
duction of nondeterminism inevitably increases the amountof communication between
hardware components, mainly because of the more complex interplay between reaction
rules. Thus implementing nondeterministic object distribution is more challenging than
implementing deterministic object distribution. Our purpose in developing a prototype
hardware implementation of the DND algorithm was to investigate the feasibility of
producing an efficient implementation of nondeterministicobject distribution.

6.12 Data structures The major data structures in our prototype implementation
are: (a) the two-dimensional coefficient matrix for the linear system, (b) a two-dimensional
traceback matrixthat records intermediate results obtained during the forward phase of
the algorithm, (c) the one-dimensional matrix containing the RHS constants of the linear
system, (d) an array for the storage of accumulated sums thatare calculated during the

An algorithm for nondeterministic object distribution in P systems 349

execution of the algorithm, and (e) an array for the storage of the solution to the object
distribution problem that is output by the algorithm. We describe the implementation of
these data structures below.

Coefficient matrix The coefficient matrix (calledCoefficientMatrix) corresponds
to the matrixA in the pseudocode for the DND algorithm in Figure 4.3. Hence it is a
two-dimensional matrix withm rows andn columns, wherem is the number of object
types in the region andn is the number of reaction rules in the region.

Although our prototype implementation of the DND algorithmdoes not aim to sup-
port parallelism across reaction rules, we leave open the possibility of implementing
some degree of parallelism in a future implementation by using registers rather than
RAMs in the implementation ofCoefficientMatrix . In our implementation, each
row of CoefficientMatrix is implemented as an array of read-only registers called
CoefficientMatrixRow . This allows parallelism both across the rows (correspond-
ing to the object types) and across the columns (corresponding to the reaction rules)
of the matrix. However, this high degree of potential parallelism comes at the cost of
a more complicated hardware circuit when the implemented array is large (i.e., when
there is a large number of reaction rules in the region).

Traceback matrix The traceback matrix (calledTracebackMatrix) corresponds to
the matrixB in the pseudocode for the DND algorithm in Figure 4.3. Each column
in this matrix records intermediate results obtained during the forward phase of the
algorithm. Only one column of the matrix is accessed at a time. Since concurrent access
to the elements in a matrix row is not required, each matrix row is implemented as an
n-entryp-bit distributed RAM calledTracebackMatrixRow , wherep is the bitwidth
of the coefficient values stored in the matrix. With each matrix row implemented as a
separate RAM, all elements in a column can be accessed concurrently.

It might be thought that, if the coefficient matrix has a largenumber of columns (i.e., if
there is a large number of reaction rules in the region), it would be better to implement
the matrix using block RAMs instead of distributed RAMs, because in this way hard-
ware resources (specifically, LUTs) could be saved for otherpurposes. The Xilinx II
FPGA used in the implementation provides up to 3 MB of dedicated on-chip memory,
organised into 144 18Kb block RAMs. As the default bitwidth for a coefficient value
is 8 bits, each block RAM on the FPGA has a depth of approximately 2 Kb, which
is enough to meet the storage requirements for a large numberof columns. However,
given the disadvantages of block RAMs identified in Section 2.4, using block RAMs is
most suitable when the number of reaction rules per region islarge and the number of
object types per region and/or the number of regions is small. If these conditions are not
satisfied, then it is probably more efficient to use distributed RAMs.

In our implementation, by default,TracebackMatrix is implemented using distributed
RAMs. However, depending on the specific characteristics ofthe input application, the

350 An algorithm for nondeterministic object distribution in P systems

user can change the default setting in order to configure the implementation to use block
RAMs only or to use both block RAMs and distributed RAMs.

Other matrices MatricesC, V andX in the pseudocode for the DND algorithm in Fig-
ure 4.3 are implemented asRHSConstantsArray ,AccumulatedArray andSolution

Array , respectively. Each of these matrices is implemented as an array of registers to
allow its elements to be accessed in parallel.

6.13 Processing units The major processing units in the prototype implementation
of the DND algorithm include a random number generator and processing units that
implement the logic of the DND algorithm. We describe the implementation of these
processing units below.

Random number generatorA random number generator (calledRandomNumber

Generator) is included in the implementation in order to realise (as closely as reason-
ably practicable) the nondeterminism of the DND algorithm.

A variety of methods of generating random numbers (really, pseudorandom numbers)
have been studied. Most of these methods involve the use of arithmetical functions.
However, because the implementation of arithmetical functions can generate deep logic
when a language such as Handel-C is used, many of these methods are not suitable for
adoption in our implementation.

A random number generator that is commonly implemented on FPGAs is the Linear
Feedback Shift Register (LFSR). An LFSR is a shift register whose input is the result
of performing the XOR (or XNOR) operation on certain bits of the shift register in its
previous state. Initially, the bits in an LFSR are initialised in a random manner11. Then
a right-shift operation is performed. An XOR (or XNOR) operation is performed on
certain bits in the shift register, and then the result is putinto the left-most bit of the shift
register. This bit may be regarded as the random number generated by the LFSR. Then
the process iterates. Although it reduces the quality of therandom numbers generated
somewhat, it is possible to construct a random number by stringing togethern distinct
bits from the LFSR in one of its states, rather than by usingn LFSRs and stringing
together the random bits from each of the LFSRs. As the XOR/XNOR operation is
very efficient to implement on an FPGA, LFSRs are among the most efficient random
number generators for FPGAs. Figure 6.8 shows an example 32-bit LFSR.

Implementing a 32-bit shift register in a standard way usingflip-flops (registers) con-
sumes approximately 16 slices (4 CLBs) since there are two flip-flops per slice (see
Figure 2.2). However, the Virtex II FPGA used in the implementation provides a partic-
ularly efficient means of implementing LFSRs. It provides a macro that can configure

11The ultimate source of this randomness is an external randomnumber generator used by the software
program that generates the Handel-C code for the implementation.

An algorithm for nondeterministic object distribution in P systems 351

Fig. 6.8 A 32-bit Linear Feedback Shift Register (LFSR). In this LFSR, bits 9, 29, 30 and 31 are
the only bits to which the logical operation (in this case theXOR operation) is applied.

an LUT into a 16-bit shift register, thereby enabling the implementation of a 32-bit shift
register using only two LUTs (i.e., approximately one slice).

In our implementation, since the object distribution processes for different regions occur
in parallel, a 32-bit LFSR was included for each region. These LFSRs execute in parallel
with the other processing units, and constantly produce random numbers. Since the
default bitwidth for data types in the implementation is 8 bits, the last 8 bits of the
LFSR are regarded as representing the random number generated by the LFSR.

The DND algorithm requires random numbers within a certain dynamically determined
range to be generated. Although an LFSR can generate random numbers with a certain
number of bits, it is unable by itself to generate random numbers within a dynamically
determined range. In our implementation, a random number within the desired range is
obtained by dropping one bit every clock cycle (starting from the most significant bit)
from the original 8-bit random number until the random number is within the required
range.

Processing units that implement the logic of the DND algorithm As described in Sec-
tion 4.7, the DND algorithm proceeds in two phases: a forwardphase and a backward
phase. Similar operations are performed in the forward phase and backward phase. To
prevent the Handel-C compiler from generating redundant hardware components, the
operations that are expensive in terms of hardware resources are implemented as sepa-
rate modules which can be invoked by the components that implement the main proce-
dures for the forward phase and backward phase. These operations areFindBoundary

Value , SubstituteValue andUpdateRHSConstants . FindBoundaryValue cal-
culates the ratios between the RHS constants and the respective coefficient values of
a variable, and returns the floor of the minimum ratio as the boundary value for the
variable.SubstituteValue computes for each coefficient value associated with a
variable the product of the coefficient value and the value ofthe variable, and updates
Accumulated

Array by adding each of the products to the value currently stored in the appropri-
ate element ofAccumulatedArray . UpdateRHSConstants calculates for each RHS
constant value the difference between the RHS constant value and the corresponding
value stored inAccumulatedArray , and stores these differences in the column of

352 An algorithm for nondeterministic object distribution in P systems

Fig. 6.9 An illustration of a hardware module implemented accordingto the client-server archi-
tecture.

TracebackMatrix that corresponds to the variable currently being processed.

TheFindBoundaryValue , SubstituteValue andUpdateRHSConstants process-
ing units are each implemented using a client-server architecture (see Figure 6.9). At the
centre of the client-server architecture is a data structure that consists of input registers
and output registers. A server processing unit is responsible for performing a computa-
tion using the data in the input registers and storing the output of the computation in the
output registers. It performs the computation constantly.A client processing unit that
wishes to use the server uses a client API to feed new input into the input registers when
it requires the computation to be performed, and to read the result of the computation
from the output registers (after waiting for the appropriate number of clock cycles).

Figure 6.10 shows the Handel-C code for a specific instance oftheSubstituteVa-

lue operation.

For each region of the P system, the implementation includes— in addition to the
FindBoundaryValue ,SubstituteValue andUpdateRHSConstants processing units
for the region — two processing units calledForwardPhaseProcessor andBackward

PhaseProcessor .

ForwardPhaseProcessor andBackwardPhaseProcessor are clients to theFind-

BoundaryValue , SubstituteValue andUpdateRHSConstants processing units.
Forward-

PhaseProcessor implements the main procedure of the forward phase of the DND
algorithm. When processing a reaction rule, it invokes the aforementioned processing
units, and also performs its own operations, such as assigning a random value to the re-
action rule and writing intermediate results intoTracebackMatrix . BackwardPhase

Processor implements the main procedure of the backward phase of the DND algo-
rithm. It operates in a similar manner toForwardPhaseProcessor , but processes the
reaction rules in reverse order. When processing a reactionrule,BackwardPhaseProc

essor either adjusts or confirms the value that was assigned to the reaction rule in the
forward phase.

An algorithm for nondeterministic object distribution in P systems 353

struct SubstituteValueStructure

{
. unsigned int 8 A0, A1;

. unsigned int 8 B ;

. unsigned int 8 C0, C1;

}
typedef struct SubstituteValueStructure

SVStruct;

macro proc SubstituteValueServer(SVPtr)

{
. /* Constantly performs the computation

*/

. while(1)

. {

. par

. {

. SVPtr->C0= SVPtr->B∗SVPtr->A0;

. SVPtr->C1= SVPtr->B∗SVPtr->A1;

. }
}

macro proc SubstituteValueAPI

(SVPtr, Address, Value)

{
. /* Send data to server */

. par

. {

. SVPtr->A0=CoefficientMatrixRow0[Address];

. SVPtr->A1=CoefficientMatrixRow1[Address];

. SVPtr->B=Value;

. }

. /* Wait for substitution to be

performed */

. delay;

. /* Receive (and store) data from

server */

. par

. {

. AccumulatedArray[0]+=SVPtr->C0;

. AccumulatedArray[1]+=SVPtr->C1;

. }
}

Fig. 6.10 An example of Handel-C code for theSubstituteValue operation, an operation
which uses the client-server architecture.

6.14 Interaction between the data structures and processing units Figure 11
shows a high-level view of the interactions that occur between the various data struc-
tures and processing units during the execution of the DND algorithm.

6.15 Parallelism The presentation of the DND algorithm in Figure 4.3 is intended
to indicate the fundamental nature of our proposed approachto the solution of the ob-
ject distribution problem. It does not take into account characteristics of the specific
computing platform on which the algorithm is to be executed.However, because any
consideration of the implementation of the DND algorithm ona hardware-based paral-
lel computing platform should include an investigation of possible ways of implement-
ing the algorithm as a parallel algorithm in order to minimise its time complexity, we
now indicate some of the ways in which the DND algorithm can beimplemented in a
parallel manner.

Regarding system-level parallelism, it is obvious that theinstances of the DND algo-
rithm for the different regions of the P system can be executed in parallel. Regarding
region-level parallelism, during the processing of a reaction rule, operations that are
performed on individual object types associated with the reaction rule (i.e., performed
on rows of the relevant matrices) can be executed in parallel. That is, parallelism across
object types can be achieved. However, because of the interdependence between the
numbers of instances of the reaction rules to be processed bythe DND algorithm, there
is no potential for the exploitation of parallelism across the main processing performed

354 An algorithm for nondeterministic object distribution in P systems

Forward phase . Backward phase

1: obtain address for current variable from a: obtain addresses for previous, current and next
2: pass address of current variable to variables from

3a: obtain intermediate RHS constants for current b1: obtain final value of previous variable from

variable from b2: pass final value to

3b: obtain coefficients for current variable from c1: obtaincoefficients for previous variable from
3c: obtain RHS constants for current variable from c2: pass final value and coefficients to

3d: pass RHS constants (or intermediate RHS d1: obtain products of final value with coefficients

constants) and coefficients to from

4: obtain boundary value for current variable from d2: storeproducts in
5a: obtain random number from e: pass addresses of current and next variables to

5b: process random number to make it less than or f1: obtain RHS constants from

obtain RHS constants from f2: obtain intermediate RHS constants for next

6: store random provisional value or final value for variablefrom
variable in f3: pass RHS constants or intermediate RHS

7: pass random provisional value for current constants to

variable to g1: obtain updated intermediate RHS constants for

8a: obtain coefficients for current variable from current variable from
8b: pass coefficients to g2: store intermediate RHS constants in

9a: obtain products of variable value with h: pass address ofcurrent variable to

coefficients from i1: obtain coefficients for current variable from

9b: store products in i2: obtain intermediate RHS constants for current
10: pass address of current variable to variable from

11a: obtain RHS constants for current variable from i3: obtain RHS constants for current variable from

11b: pass RHS constants to i4: pass RHS constants (or intermediate RHS
12a: obtain intermediate RHS constants from constants) andcoefficients to

12b: store intermediate RHS constants in j: obtain boundaryvalue for current variable from

k: store boundary value for current variable in

Fig. 6.11 A high-level view of the interactions that occur between thevarious data structures and
processing units in the prototype implementation during the execution of the DND algorithm.

An algorithm for nondeterministic object distribution in P systems 355

for these reaction rules (i.e., across columns of the relevant matrices)12. Even so, there
are some operations that can be carried out in parallel in order to speed up the DND
algorithm (in both the forward phase and backward phase). For instance, lines 5, 14 and
15 in the pseudocode in Figure 4.3 can be executed for all the reaction rules before the
start of the DND algorithm so that those reaction rules to which it is impossible that
objects be distributed can be entirely removed from consideration immediately. In this
way, the DND algorithm would need only to process a subset of the reaction rules. In
addition, during the execution of the DND algorithm, lines 7, 14, 15 and 28 can be con-
currently and constantly executed for all the reaction rules other than the reaction rule
currently being processed in the usual way by the DND algorithm. This would result in
the numbers of instances of some of the reaction rules being preemptively set to zero or
finalised. These reaction rules would not need to be processed by the DND algorithm in
the usual way. This would enable the detection of the following two types of situations:
(a) at the end of the forward phase, no values need to be adjusted, and (b) at some point
during the backward phase, none of the remaining values needs to be adjusted. In the
first case, the backward phase can be skipped entirely, even if the boundary value for the
last reaction rule to be processed in the forward phase is notan integer. In the second
case, it would be possible to preemptively terminate the backward phase.

The purpose of our existing implementation of the DND algorithm is to investigate the
feasibility of incorporating an efficient implementation of nondeterministic object dis-
tribution into Reconfig-P. So in this work we are interested primarily in the average-case
execution of the DND algorithm. In the average case, all of the reaction rules need to
be processed in the usual manner, one after the other (i.e., it is not possible to preemp-
tively set the number of instances of any of the reaction rules to zero). Thus, our current
implementation of the DND algorithm achieves full parallelism at the system level and
parallelism across object types at the region level. If we determine that it is feasible to
incorporate an efficient implementation of the DND algorithm into Reconfig-P, we will
take advantage of the existing parallelism across reactionrules achieved by the current
version of Reconfig-P in the implementation of the parallelised preemptive termination
strategies outlined above. At present,CoefficientMatrix is implemented as an array
of registers to make the realisation of these strategies possible.

Given that our prototype implementation achieves system-level parallelism, the num-
ber of clock cycles taken to complete the object distribution process for every region
is equal to the number of clock cycles taken to complete the most time-consuming of
these processes. Within each region, the major processing units that perform computa-
tions across object types (such asSubstituteVariable-

Server andUpdateSystemServer) take only one clock cycle to complete their re-
spective computations. Also performing its computation across object types, theFind

BoundaryValueServer processing unit, provided that the standard Handel-C imple-

12Although it is conceivable that one could develop a nondeterministic algorithm that implements paral-
lelism across the main processing for the reaction rules, such an algorithm is likely to involve complicated
and potentially numerous rollbacks.

356 An algorithm for nondeterministic object distribution in P systems

mentation of division is used, takes log2m clock cycles to complete its operations, where
m is the number of object types.

6.16 Optimisations aimed at reducing path delays in the circuit Typically the
execution of an operation on a digital circuit involves arouting delay(because of the
time taken for the transmission of inputs and outputs) and alogic delay(because of
the time taken for data to be passed through a series of logic gates). Roughly, thepath
delay for an operation is the sum of the routing delay and the logic delay associated
with the execution of that operation. As the clock rate of thewhole hardware system is
determined by the longest path delay on the circuit, it is important to evenly distribute
the path delays among the various operations.

Instead of manually placing hardware components at specificlocations on the chip, it
is possible in our case to reduce the path delay in an indirectmanner by generating the
Handel-C code in such a way that it can be converted by the Handel-C compiler and
Xilinx synthesis tools into a circuit with efficient placement and routing.

We now briefly describe two methods by which we reduced path delays in our imple-
mentation: duplication of hardware components and logic depth reduction.

Duplication of hardware componentsIn the implementation of an operation, wher-
ever possible, if the cost of routing data to/from a component is greater than the cost of
implementing a duplicate component at a more optimal location, then a duplicate com-
ponent is implemented. For example, in the forward and backward phases of the DND
algorithm, different arrays of column indices are used, even though in principle a single
array of column indices could be used for both phases.

Logic depth reduction In our implementation, since an operation expressed as a single
Handel-C statement will always execute in exactly one clockcycle, the execution time
performance of the implementation can be improved by reducing the logic depth gener-
ated by the statement that generates the greatest logic depth. The logic depth generated
by a statement can be reduced by decomposing complex logicaloperations into sev-
eral less complex operations by introducing local registers to store intermediate results
and consequently spreading the operation over multiple clock cycles. For example, in
FindBoundaryValueServer , the process of comparing the list of ratios between the
number of objects available and the number of objects required by a reaction rule for
each object type is performed in a tree-like fashion with each level of the tree processed
in one clock cycle.

The logic depth of a statement can also be reduced by avoidingthe use of operations
that generate very large combinatorial circuits. For example, to calculate the ratios in
theFindBoundaryValueServer , one could use the standard Handel-C division oper-
ator. When implemented at the hardware level, the operationdenoted by this operator

An algorithm for nondeterministic object distribution in P systems 357

consumes only one clock cycle, but generates deep logic and uses significant hardware
resources. As a consequence, alternative means of performing the division operation
may be considered. One option is to implement the division operation using bit shifts.
Because bit shifts can be implemented very efficiently on FPGAs, for our implementa-
tion the default setting is that division operations are implemented using bit shifts.

The algorithm in Figure 6.12 describes how the division operation is accomplished in
our implementation using bit shifts. In Handel-C, each stepin the algorithm can be
implemented in one clock cycle without generating deep logic. So the total number of
clock cycles taken to execute a division for two 8-bit variables is fixed at 25. Thus the
advantage of this method is that a division can be performed in a fixed number of steps,
each of which can be implemented in Handel-C in a fixed number of clock cycles.

As we have observed, reducing a path delay associated with the execution of an op-
eration usually results in increasing the number of clock cycles taken to execute the
operation. Thus, in the optimisation of a circuit, a trade-off needs to be made between
minimising the number of clock cycles and maximising the clock rate. Hence careful
judgement needs to be applied in attempting to satisfy the overall performance require-
ments for the circuit.

7 Evaluation of the hardware implementation of the DND
algorithm

In this section, we evaluate our prototype hardware implementation of the DND algo-
rithm. More specifically, we report experimental results related to the hardware resource
consumption and clock rate of the implementation. Collectively, these results provide
insight into the efficiency of the implementation, and suggest whether it is feasible to in-

Integer division algorithm

1. Initialise all the registers. The remainder has a width double the default width. Initialise
the right
. half of the remainder register with the value of the dividend and initialise the left half
of the remainder
. register with zeros.

2. Subtract the value of the divisor register from the left half of the remainder register.

3. If the value of the remainder is negative, restore the value of the remainder to its value
prior to the
. subtraction operation occurring, perform a right-shift operation on the remainder, and
then insert
. 0 at the right end of the remainder register. Otherwise, perform a right-shift operation
on the
. remainder, and insert 1 at the right end of the remainder register.

After n steps, where n is the default width, the remainder register contains the quotient
in its right half and the remainder in its left half.

Fig. 6.12 A division algorithm using bit shifts.

358 An algorithm for nondeterministic object distribution in P systems

Appli- Regions Rules Object types

-cation × regions

A1 2 8 8

A2 4 16 16

A3 8 32 32

A4 16 64 64

A5 24 96 96

Appli- Regions Rules Object types

-cation × regions

B1 4 16 8

B2 4 16 16

B3 4 16 32

B4 4 16 64

B5 4 16 96

Appli- Regions Rules Object types

-cation × regions

C1 4 8 16

C2 4 16 16

C3 4 32 16

C4 4 64 16

C5 4 96 16

Table 7.2 Details of the input applications used in the experiments.

corporate the implementation into a hardware implementation of membrane computing
such as Reconfig-P.

Before presenting the experimental results, we describe the experiments that have been
conducted.

7.17 Details of the experiments Each experiment essentially involved the genera-
tion of hardware circuits for a particular instance of the object distribution problem, and
the measurement of certain characteristics of these hardware circuits.

To perform the experiments, we developed two software programs. One program is able
to automatically generate a set of linear systems (corresponding to a set of regions in
a P system), where the coefficients and RHS constants of each linear system are set
randomly. We refer to such a set of linear systems as aninput application. The other
program is able to analyse an input application and generatea Handel-C program that
implements the DND algorithm for each linear system in the application.

Hardware circuits were generated for three classes of inputapplications. The applica-
tions in a given class are ordered according to their size as measured by a particular
parameter. In the first class, applications differ with respect to the number of object
types per region. In the second class, applications differ with respect to the number of
reaction rules per region. And in the third class, applications differ with respect to the
number of regions. The details of the input applications aregiven in Table 2.

Three circuits, and therefore three Handel-C programs, were generated for each input
application. One of the circuits used block RAMs, whereas the other two circuits used
distributed RAMs (the default option for memory). One of thetwo circuits using dis-
tributed RAMs used the standard Handel-C division operator, whereas the other circuit
using distributed RAMs used the division algorithm specified in Figure 6.12. After com-
pilation, each Handel-C program was synthesised into a circuit using Xilinx tools.

7.18 Experimental results Table 7.3 shows the results of the experiments. In the
table, the values of various parameters are recorded for 45 hardware circuits (gener-
ated for the 15 input applications). The first of these parameters, the percentage of the

An algorithm for nondeterministic object distribution in P systems 359

available LUTs used, serves as a measure of the overall hardware consumption of the
implementation. The second of these parameters, the percentage of the available LUTs
used as RAMs, serves as a measure of the extent to which hardware resources on the
chip are used for data storage. In cases where block RAMs are used, the percentage of
the available block RAMs used is recorded. For each circuit,the clock rate at which the
circuit executes the input application is also recorded.

Influence of the type of scaling appliedIn terms of influence on hardware resource
consumption, varying the number of regions has a greater effect than varying the num-
ber of object types, which in turn has a greater effect than varying the number of reaction
rules. This is in accordance with our expectations. Since, to preserve system-level paral-
lelism, an instance of the DND algorithm has to be implemented for every region, if the
number of regions is increased, the hardware components that implement the DND al-
gorithm need to be replicated once for each additional region. Consequently, the degree
of hardware consumption increases approximately linearlywith the number of regions.
An increase in the number of object types results in a sublinear increase in hardware
resource consumption mainly because of the fact that the hardware components that
implement the major operations of the algorithm need to be replicated to allow parallel
processing across object types. Since reaction rules (i.e., columns in the coefficient and
traceback matrices) are processed one after the other, the relevant hardware components
do not need to be replicated for the sake of parallel processing, and therefore increasing
the number of reaction rules has a minimal effect on hardwareresource consumption.

Influence of the type of RAMs usedAs expected, in general, circuits using distributed
RAMs achieve higher clock rates than circuits using block RAMs. In terms of influence
on hardware resource consumption, the percentage of the available LUTs used when
distributed RAMs are used is approximately the same as the percentage used when
block RAMs are used. However, it is noticeable that, when thenumber of reaction rules
increases, the amount of block RAMs used remains constant. This is because each block
RAM can store a large amount of data. In summary, it is generally advantageous to use
distributed RAMs rather than block RAMs, but the use of blockRAMs should perhaps
be considered when there is a very large number of reaction rules.

Influence of the optimisation of the division operationIn order to determine the effect
of our optimisation of the division operation (see Section 6.16), for each application,
both a circuit using the standard Handel-C division operation and a circuit using the
bitshift division algorithm shown in Figure 6.12 were generated and compared. As il-
lustrated in Table 7.3, circuits using the standard Handel-C division operation consume
significantly more hardware resources (almost three times more in the case of applica-
tion B5) and achieve lower clock rates than circuits using the bitshift division algorithm.
This is largely due to the large combinatorial circuit that is generated by the standard
Handel-C division operation. In summary, the results demonstrate that our introduction
of an alternative to the Handel-C division operation is wellmotivated.

360 An algorithm for nondeterministic object distribution in P systems

Overall assessment of the hardware resource consumption results The hardware re-
source consumption results are illustrated in graphical form in Figure 7.13.

As expected, the implementation of the DND algorithm consumes more hardware re-
sources than the algorithm for deterministic object distribution used in Reconfig-P.
Even so, in regard to our goal of incorporating nondeterministic object distribution into
Reconfig-P, the hardware resource consumption results are promising. For example, ex-
ecuting the application with the largest number of regions (i.e., application A5) using the
bitshift division algorithm requires only approximately 29% of the hardware resources
to be used.

Overall assessment of the clock rate resultsIn the default configuration (i.e., when
distributed RAMs and bitshift division are used), the clockrates observed in the ex-
periments range from 53 MHz to 77 MHz, with the average clock rate being 67 MHz.
Incidentally, this average clock rate is almost exactly equal to the rate of the PCI bus
which connects the host computer and FPGA used in Reconfig-P.Reconfig-P, in its cur-
rent configuration, cannot exceed a clock rate of 66 MHz, regardless of the clock rate
of the circuit being executed, because its clock rate is limited by the rate of the PCI bus.
So, given that our ultimate goal is to incorporate the DND algorithm into Reconfig-P,
the clock rate results are definitely promising.

Fig. 7.13 Hardware resource consumption and clock rate results for the prototype hardware im-
plementation of the DND algorithm in its default configuration.

8 Conclusion

We have devised an elegant and efficient algorithm for nondeterministic object distri-
bution in P systems: the DND algorithm. We have also successfully implemented this
algorithm in hardware using reconfigurable computing technology, thereby showing that
it is suitable for implementation using such technology.

An algorithm for nondeterministic object distribution in P systems 361

Application Using distributed RAMs and bit- Using distributed RAMs and Using block RAMs and

shift division (default configuration) Handel-C division bitshift division

% of % LUTs Clock % of % LUTs Clock % of % of Clock

LUTs as RAMs rate LUTs as RAMs rate LUTs BRAMs rate

Scaling number of regions

A1 2.81% 0.10% 76 5.64% 0.10% 50 2.81% 5.55% 76

A2 5.10% 0.20% 76 10.77% 0.20% 48 5.28% 11.11% 71

A3 10.00% 0.40% 60 20.86% 0.40% 51 10.00% 22.22% 61

A4 19.32% 1.80% 56 40.96% 0.80% 46 19.50% 44.44% 57

A5 28.55% 1.21% 53 61.24% 1.21% 42 29.13% 66.66% 52

Scaling number of object types

B1 3.45% 0.11% 77 6.15% 0.11% 64 3.32% 5.55% 68

B2 5.10% 0.20% 76 10.77% 0.20% 48 5.28% 11.11% 71

B3 8.77% 0.40% 73 20.41% 0.39% 50 9.01% 22.22% 61

B4 15.57% 0.77% 65 38.54% 0.77% 46 15.16% 44.45% 60

B5 22.52% 1.15% 58 64.02% 1.15% 30 21.71% 66.66% 51

Scaling number of reaction rules

C1 4.37% 0.20% 75 6.70% 0.19% 53 4.29% 11.11% 68

C2 5.10% 0.20% 76 10.77% 0.20% 48 5.28% 11.11% 71

C3 6.49% 0.21% 67 12.50% 0.21% 48 6.39% 11.11% 66

C4 7.71% 0.21% 64 13.51% 0.21% 42 7.42% 11.11% 59

C5 8.54% 0.44% 53 14.00% 0.43% 41 8.06% 11.11% 52

.

Table 7.3 Hardware resource consumption and clock rate results for the prototype hardware im-
plementation of the DND algorithm.

Our prototype hardware implementation of the DND algorithmrealises the DND al-
gorithm as a standalone process. Therefore we have not yet demonstrated that nonde-
terministic object distribution can be incorporated into Reconfig-P, which includes the
other elements of basic cell-like P systems (such as updating of object multiplicities as
a result of the application of reaction rules, and synchronisation of the applications of
reaction rules occurring in different regions), without compromising too significantly
its performance, flexibility or scalability. For example, it is conceivable that combin-
ing the existing standalone implementation of the DND algorithm with the existing

362 An algorithm for nondeterministic object distribution in P systems

implementation of Reconfig-P will give rise to placement androuting problems that
will significantly reduce the current clock rate and/or significantly increase the current
hardware resource consumption of Reconfig-P. Nevertheless, our results provide strong
evidence that nondeterministic object distribution can beincorporated into Reconfig-P
as desired.

Our future work will involve an attempt to successfully incorporate the DND algorithm
into Reconfig-P.

Bibliography

[1] Ciobanu, G. and Guo, W. 2004. P Systems Running on a Cluster of Computers.
In Martı́n-Vide, C., Mauri, G., Păun, G., Rozenberg, G. andSalomaa, A. (eds)
Membrane Computing. International Workshop, WMC2003, Tarragona, Spain, July
2003. Revised Papers. Vol. 2933 of Lecture Notes in Computer Science, Springer-
Verlag, 123–139.

[2] George, M. and Alfke, P. 2007. Linear Feedback Shift Registers in Virtex Devices.
http://www.xilinx.com/bvdocs/appnotes/xapp210.pdf ,269–285.

[3] Martinez, V., Fernandez, L., Arroyo, F. and Gutierrez, A. 2007. HW Implementation
of a Optimized Algorithm for the Application of Active Rulesin a Transition P-
system.International Journal Information Theories and Applications, Vol. 14, 324–
331.

[4] Nguyen, V., Kearney, D. and Gioiosa, G. 2007. Balancing Performance, Flexibility
and Scalability in a Parallel Computing Platform for Membrane Computing Appli-
cations. In G. Eleftherakis et al. (eds)WMC8 2007. Vol. 4860 of Lecture Notes in
Computer Science, Springer, pp. 385–413.

[5] Nguyen, V., Kearney, D. and Gioiosa, G. An Implementation of Membrane Compu-
ting using Reconfigurable Hardware. To appear inComputing and Informatics.

[6] Păun, G. 2002.Membrane Computing: An Introduction. Springer.
[7] Petreska, B. and Teuscher, C. 2004. A Reconfigurable Hardware Membrane Sys-

tem. In Martı́n-Vide, C., Mauri, G., Pãun, G., Rozenberg, G. and Salomaa, A. (eds)
Membrane Computing. International Workshop, WMC 2003, Tarragona, Spain,
July 2003. Revised Papers. Vol. 2933 of Lecture Notes in Computer Science, Springer-
Verlag, 269–265.

Membrane algorithm solving job-shop
scheduling problems

———————————————
Taishin Y. Nishida, Tatsuya Shiotani, Yoshiyuki Takahashi

Toyama Prefectural University, Faculty of Engineering,
Imizu-shi, Toyama 939-0398, Japan
nishida@pu-toyama.ac.jp

In this paper, membrane algorithms solving job-shop scheduling problems
(JSSP) are investigated. Two types of membrane algorithms are constructed by
adding constraints of JSSP to components of membrane algorithms for solving
travelling salesman problems. Computer simulations show that the algorithms
can get considerably good approximations for several benchmark problems.

1 Introduction

Membrane algorithm [5–7] is a practical application of P system [9]. A membrane algo-
rithm solves a combinatorial optimization problem using a framework from P system,
i.e., a nested membrane structure. Each region which is separated by two consecutive
membranes has a subalgorithm and a few tentative solutions of the problem. The sub-
algorithm converts the solutions into new solutions and then they are exchanged with
adjacent regions. A better solution is sent to the inner region and a worse solution is
sent to the outer region. Thus a well approximate solution will appear in the innermost
region and it will be the output of the algorithm.

Membrane algorithm has two features, which other approximate algorithms seldom
have. There is a spatial variety of subalgorithms in addition to (possibly) temporal
variety. Many approximate algorithms, e.g., simulated annealing [2], change their pa-
rameters as the computation proceeds. On the other hand, membrane algorithm can
assign various parameters to subalgorithms and let them runsimultaneously. Secondly,
membrane algorithm can combine subalgorithms based on different principles, e.g., ge-
netic algorithm and simulated annealing. Using these features, a membrane algorithm
has given good approximate solutions for the travelling salesman problem (TSP for
short) [8].

In this paper, we apply membrane algorithm to the job-shop scheduling problems (JSSP
for short). JSSP is a well known NP-hard optimization problem which is investigated

364 Membrane algorithm solving job-shop scheduling problems

for about a half century [3]. Two types of membrane algorithms solving JSSP are con-
structed by modifying the algorithm for TSP [8], one has local search subalgorithms
with temperature parameter (simulated annealing type) anda genetic algorithm with
recombination only (no mutations) and the other has local search only. Computer sim-
ulations show that the algorithms can get considerably goodapproximations for several
benchmark problems.

2 Job-shop scheduling problems

A job-shop scheduling problem (JSSP) consists of a number ofjobs and a number of
machines. In what follows we consider a JSSP withm machines (1, . . . , m) andn jobs
(1, . . . , n). Each jobi must be processed by all machines and each machine can process
only one job at a time. A machine cannot be interrupted when itbegins to process a job.
Machinej finishes jobi in a process timepij . For every job, an order of machines on
which the job is processed is given by an instance of JSSP. Theorder is called atechnical
order. For every pair of jobi and machinej, the process timepij is also given.

A schedule is assignments of beginning and ending times to all pairs of jobs and machi-
nes. The time to complete all jobs is the interval between theearliest beginning time and
the latest ending time, which is called amakespan. Given technical order and process
timespij , JSSP is to find a schedule of shortest makespan.

Table 2.1 A technical order (left) and process times (right) of3 × 3 JSSP. Each entry of the left
table shows the machine on which the job is to be processed at the order. The right table shows
the process timespij , 1 ≤ i ≤ 3 and1 ≤ j ≤ 3.

order

jobs 1st 2nd 3rd

1 1 2 3

2 1 3 2

3 2 3 1

machines

jobs 1 2 3

1 3 3 2

2 2 3 5

3 1 2 6

Example 1. Table 2.1 shows a technical order and process times of JSSPwith 3 jobs
and 3 machines.

A schedule is visualized by a Gantt chart. The left chart of Figure 2.1 shows a schedule
in which each machine processes jobs in the order 1,2,3. The makespan of the left chart
is 27. The right chart shows a schedule which gives the shortest makespan 15. There are
more than one schedules which give the shortest makespan. 2

Membrane algorithm solving job-shop scheduling problems 365

Fig. 2.1 Gantt charts of a schedule (A) and one of the optimal schedule(B).

Input: The solution matrixS = (sij).
Output: Solution matrixS′ which is modified so that no deadlock occurs.
Symbols: processed[i] is a set of jobs which are processable on machinei. The initial

value of processed[i] is {si1} if job si1 is processed on machinei at first by
the technical order,∅ otherwise.

1. Letj = sik be the job which is examined whether it is processable or not.
1.1 Letl be the order that jobj is processed on machinei at l-th order in the

technical order.
1.2 If l = 1 (the top the the technical order) orj ∈ processed[tjl−1] (wheretjl−1

is the machine on which jobj is processed atl − 1-st order),
1.3 then insertj into processed[i] (job j is processable on machinei).

2. If there are no jobs which become processable by steps 1.1—1.3 (there is a
deadlock)

2.1 Selecti randomly from1, . . . , m.
2.2 Letj = sik be the first job which is not processable on machinei.
2.3 Letl be the order that jobj is processed on machinei at l-th order in the

technical order.
2.4 ∀x ∈ {1, . . . , l} if j 6∈ processed[tjx] (job j is not processable on machinetjx)

then do
2.4.1 Lety be an integer such thatstjx,y = j.
2.4.2 Swapsik andstjx,y.
2.4.3 Insertj into processed[tjx].

Fig. 3.2 An outline of deadlock removing algorithm.

3 Design of membrane algorithm

We use ann×m matrixS to denote a solution of JSSP withn jobs andm machines. The
i, j elementsij of S denotes that jobsij is processed on machinei at thej-th process
of the machine. The beginning and ending times and the makespan are automatically

366 Membrane algorithm solving job-shop scheduling problems

computed fromS and the process times. For example, the next matricesS1 and S2

represent schedules A and B in Example 1

S1 =




1 2 3

1 2 3

1 2 3


 and S2 =




2 1 3

3 2 1

2 3 1


 ,

respectively.

Using the above notation, subalgorithms for a membrane algorithm solving JSSP are
easily made from algorithms commonly used for other optimization problems, since
solutions of many optimization problems are expressed in a vector or a matrix. In this
paper, we make two subalgorithms which use one of the following principles.

The first one is a local search based on a random exchange. Letv = (a1, . . . , vk) be
a vector. Then a vectorv′ = (v1, . . . , vi−1, vj , vi+1, . . . , vj−1, vi, vj+1, . . . , vk) where
1 ≤ i < j ≤ k are randomly selected integers is a neighbour ofv.

The second one is an order crossover on two vectors which has been developed for
genetic algorithm [4]. Since an order crossover is complicated, we explain it by an
example. Let

A = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

B = (8, 7, 1, 2, 3, 10, 9, 5, 4, 6)

be vectors to be crossed over. Crossing positions, in this example 5 and 7, are randomly
selected

A = (1, 2, 3, 4, | 5, 6, 7, | 8, 9, 10)

B = (8, 7, 1, 2, | 3, 10, 9, | 5, 4, 6).

We would like to insert the subsequence(5, 6, 7) between the crossing positions of
A to the corresponding part ofB. In order to remove duplications (5,6,and 7) in the
resulting vector(8, 7, 1, 2, 5, 6, 7, 5, 4, 6), numbers 5, 6, and 7 inB are marked by H
(and duplicated numbers inA are done so)

A = (1, 2, H, 4, | 5, 6, 7, | 8, H, H)

B = (8, H, 1, 2, | 3, 10, 9, |H, 4, H).

The marked positions are filled with a sliding motion that starts following the second
crossing position

A = (4, 5, 6, 7, |H, H, H, | 8, 1, 2)

B = (2, 3, 10, 9, |H, H, H, | 4, 8, 1).

Finally, subsequences between the crossing positions are placed and the new vectors are
obtained

Membrane algorithm solving job-shop scheduling problems 367

A′ = (4, 5, 6, 7, | 3, 10, 9, | 8, 1, 2)

B′ = (2, 3, 10, 9, | 5, 6, 7, | 4, 8, 1).

Using the above principles, we have designed Brownian and GAsubalgorithms. A
Brownian subalgorithm has one schedule matrixS. It makes a new matrixS′ by the
local search on one randomly selected row ofS. If the makespanτ ′ of S′ is smaller
than the makespamτ of S, thenS′ is accepted as the solution that is sent to the adjacent
regions. Otherwise,S′ is accepted in probabilityexp(τ − τ ′)/T whereT is a “tempera-
ture” parameter. IfS′ is not accepted,S becomes the solution to be sent. At the solution
exchange phase, if the solution in the outer region is betterthan the solution in the inner
region, then the two solutions are exchanged. In order for a solution not to go through
all regions at one iteration of subalgorithms, exchanges between two Brownian regions
are done every other iteration step.

A GA subalgorithm has two schedule matrices. The algorithm crosses every pair of cor-
responding rows of the matrices with the order crossover andmakes two new matrices.
The best solution of the four (old and new) solutions is sent to the inner region and the
worst solution is sent to the outer region.

We must careful with deadlocks which are hidden in the matrixnotation. In Example 1,
the next matrixSd cannot be processed

Sd =




3 1 2

2 3 1

1 2 3


 .

We denote(Mx, Jx) <T (My, Jy) (resp.(Mx, Jx) <S (My, Jy)) if the combination
of machineMx and jobJx must be processed earlier than the combination ofMy and
Jy by the technical order (resp. solutionS). Then we have the next relations:

(M1, J3) <Sd
(M1, J2), (M3, J2) <Sd

(M3, J3)

(M1, J2) <T (M3, J2), (M3, J3) <T (M1, J3),

which make a loop(M1, J3) < (M1, J3) or a deadlock. Although algorithms specific
to JSSP use other data structures, e.g., a graph, we use matrix and a deadlock removing
algorithm. Outline of the deadlock removing algorithm can be found in Figure 3.2.

4 Computer Experiments and their results

We examine two types of membrane algorithms. One has 20 membranes and a Brow-
nian subalgorithm in each region. The temperature of the innermost region is 0. The
temperature of regionr (0 < r < 20) is given byTmaxθ19−r where

368 Membrane algorithm solving job-shop scheduling problems

θ = 20

√
Tmin

Tmax
,

Tmax = 0.5mtmax, andTmin = 0.5tmin/m in whichm is the number of machines and
tmax andtmin are the maximum and minimum process time, respectively. This type is
called “all B”.

The other type has 20 membranes and one subalgorithm of genetic type and 19 Brow-
nian subalgorithms. The innermost region (region 0) has Brownian with temperature 0,
region 1 has genetic subalgorithm, and regions 2 to 19 have Brownian with temperature
varying from 0 to the maximum. The temperatureT of regionr (2 ≤ r < 20) is given
by

T =

{
0 if r = 2

Tmaxθ19−r otherwise

where

θ = 18

√
Tmin

Tmax

andTmax andTmin are the same as the “all B” algorithm. The genetic subalgorithm
in region 1 does the order crossover once in every 16 steps. Itdoes nothing in every
other 15 steps. Since a crossover changes solutions largely, crossover in every step is
ill-balanced with local search. This algorithm is called “BG”.

Table 4.2 shows the results for rather simple instances. Table 4.3 shows the results for
more complex instances which are called the “10 tough problems” [1]. Every experi-
ment consists of 20 trials. One trial is terminated after 200,000 iterations of subalgo-
rithms at every region.

Table 4.2 Averages and standard deviations (in the parentheses) of results of membrane algo-
rithms solving easy problems. The size is expressed by (number of jobs)×(number of machines).
The number of trials is 20 for each algorithm-problem combination. MA (all B) stands for mem-
brane algorithm with Brownian subalgorithms only and MA (BG) stands for membrane algorithm
with Brownian and genetic subalgorithms. The “*” means thatthe optimum value is obtained.

Problems(optimum, size) MA (all B) MA (BG)

abz5 (1235,10× 10) 1248.45 (3.23) 1247.55 (5.00)

la1 (666,10× 5) 666 (0.0)* 666 (0.0)*

la2 (655,10× 10) 655.15 (0.48)* 656.5 (3.04)*

la19 (842,10× 10) 850.2 (4.80)* 850.2 (4.12)*

Membrane algorithm solving job-shop scheduling problems 369

Table 4.3 Best values, Averages, and standard deviations (in the parentheses) obtained by algo-
rithms solving “10 tough problems”. CBSA+SB stands for results by T. Yamada and R. Nakano
[10]. Some optimum values are the best approximate values obtained up to now. The meaning of
other symbols are identical to Table 4.2.

Problems MA (all B) MA (BG) CBSA+SB

(optimum, size) best av.(std.) best av.(std.) best av.(std.)

abz7 (656,20× 15) 706 715.4 (4.76) 701 716 (7.67) 665 671 (3.92)

abz8 (645,20× 15) 718 730.6 (5.92) 716 730.9 (7.73) 675 680 (3.13)

abz9 (661,20× 15) 727 745.6 (8.51) 728 743.0 (9.46) 686 698.6 (7.42)

la21 (1046,15× 10) 1059 1072.9 (7.71) 1058 1074.6 (8.83) 1046 1049.3 (3.32)

la24 (935,15× 10) 951 962.1 (5.03) 946 962.3 (7.89) 935 939.2 (1.99)

la25 (977,15× 10) 995 1007.5 (7.90) 988 1008.4 (9.72) 977 979.3 (1.62)

la27 (1235,20× 10) 1268 1279.3 (8.35) 1267 1276.0 (5.38) 1235 1242.4 (6.15)

la29 (1152,20× 10) 1202 1220.9 (11.3) 1196 1223.4 (13.4) 1154 1162.4 (7.10)

la38 (1196,15× 15) 1237 1265.0 (14.5) 1221 1251.7 (14.5) 1198 1206.8 (4.53)

la40 (1222,15× 15) 1262 1270.0 (6.09) 1249 1270.5 (12.3) 1228 1230.2 (2.31)

5 Conclusions

The membrane algorithms which are investigated in this paper cannot solve “tough
problems” as well as a specially tuned algorithm [10]. The results do not discourage
membrane algorithm because the membrane algorithms use common structures for op-
timization problems and only obey the JSSP specific constraint, i.e., deadlock. There
must be many possibilities for improvement.

The combination of genetic and Brownian subalgirthms slightly better than Brownian
only. This supports the advantage of membrane algorithm that it can combine subal-
gorithms based on different principles. Subalgorithms on various principles can widely
search the solution space and hence can avoid a local minima.

Bibliography

[1] D. Applegate and W. Cook: A computational study of the job-shop scheduling
problem,ORSA J. on Comput., 3 (1991) 14-156.

[2] R. Azencott (eds):Simulated Annealing, (John Wily & Sons, New York, 1992).
[3] B. Giffler and G. L. Thompson: Algorithms for solving production-scheduling

problems,Operations Research, 8 (1960) 487–503.
[4] D. E. Goldberg:Genetic algorithms(Addison-Wesley, Reading, 1989).

370 Membrane algorithm solving job-shop scheduling problems

[5] T.Y. Nishida: An application of P-system: A new algorithm for NP-complete op-
timization problems, inProceedings of The 8th World Multi-Conference on Sys-
tems, Cybernetics and Informatics, eds. N. Callaos et. al., (2004, vol V), pp. 109–
112.

[6] T.Y. Nishida: An approximate algorithm for NP-completeoptimization problems
exploiting P-systems, inApplication of Membrane Computing, eds. G. Ciobanu,
Gh. Păun, and M.J. Pérez-Jiménez, (Springer-Verlag, Berlin, 2005), pp. 301–312.

[7] T.Y. Nishida: Membrane algorithm, inMembrane Computing, eds. R. Freund,
Gh. Păun, G. Rozenberg, and A. Salomaa (Springer-Verlag, Berlin, 2006) pp. 55–
66.

[8] T.Y. Nishida: Membrane algorithm with Brownian subalgorithm and genetic sub-
algorithm,Foundations of Computer Science, 18 (2007) 1353–1360.

[9] Gh. Păun: Computing with membranes,Journal of Computer and System Sciences,
61 (2000), 108–143.

[10] T. Yamada and R. Nakano: Job-shop scheduling by simulated annealing combined
with determinisitc local search,Journal of IPSJ, 37 (1996) 597–604 (in Japanese).

On mathematical modeling
of anatomical assembly, spatial features,
and functional organization of cortex
by application of hereditarily finite sets

———————————————
Adam Obtulowicz

Polish Academy of Sciences, Institute of Mathematics,
Śniadeckich 8, P.O.B. 21, 00-956 Warsaw, Poland
A.Obtulowicz@impan.gov.pl

A common ground language for linking anatomical, spatial and functional orga-
nization aspects of cortex is proposed with regards to conceptual (descriptive)
and computational approaches to cortex models formation, including distributed
computational systems inspired by cortex models. The core of that common
ground language is mathematical language of hereditarily finite sets, and some
known cortex models are described in this language of hereditarily finite sets to
link the mentioned cortex aspects.

1 Introduction

We propose a common ground language for linking anatomical,spatial, and functional
organization aspects of cortex, where the regards to conceptual (descriptive) and com-
putational approaches to cortex models formation are respected.

The regard to conceptual approach, contained in the paper, concerns anatomical assem-
bly, spatial features, and functional organization of cortex which are based on cortex
models proposed by V. B. Mountcastle in [27], [28] and by D. C.Van Essen in [15], [39].
In the last two papers functional organization of cortex hasa form of hierarchical system
then developed and improved in [20], [21].

The regard to computational approach, contained in the paper, concerns computational
models of cortex based on the concept of a system of nested neural networks described
by J. P. Sutton et al. in [37] and on the idea of a network of networks due to J. A. Ander-
son and J. P. Sutton, presented in [26], [5], [6], where distributed computational systems
inspired by cortex models are also proposed.

The core of the proposed common ground language is mathematical language of hered-
itarily finite sets which was applied by R. Gandy in [17] to give a characterization of

372 Mathematical modeling of cortex

abstract computing devices (the characterization was thenimproved and more exten-
sively explained by W. Sieg in [34], [35]) and by N. De Pisapiain [11] to model abstract
neural nets.

The cortex models presented in the papers quoted above are described in the language of
hereditarily finite sets in Sections 2 and 3 of the present paper, where the links between
the mentioned cortex aspects are also discussed.

The paper is aimed among others to be a hint and a brief survey of some methods of
cortex modeling and related topics for those who will approach problem B in [29] of
applications of spiking neural P systems (introduced in [22]) in neurology, in particular
in modeling cortex behaviour and computations inspired by this behaviour.

The basic concepts concerning hereditarily finite sets are introduced and explained in
the following definitions and comments.

Definition 1 We recall now the notion of a hereditarily finite set used in [17]. For a po-
tentially infinite setL of labels or names which are urelements, i.e., they are not (treated
as) sets themselves, we define inductively a family of setsHFi for natural numbersi ≥ 0
such that

HF0 = ∅,

HFi+1 = the set of nonempty finite subsets ofL ∪HFi.

The elements of the unionHF =
⋃{HFi | i ≥ 0} ∪ {∅} are called hereditarily finite

sets overL or hereditarily finite sets with urelements inL, or simply hereditarily finite
sets if there is no risk of confusion.

For x ∈ HF we define its weak transitive closureWTC(x) and supportsupp(x) by

WTC(x) =
⋃{

WTC(y) |y ∈ x andy ∈ HF
}
∪ {x}

supp(x) = (x ∩ L) ∪
⋃
{supp(y) |y ∈ x andy ∈ HF},

and the depth ofx is defined to be the smallest natural numberi for whichx ∈ HFi.

We writedepth(x) to denote the depth of a hereditarily finite setx.

Explanatory Comments 1 One interprets a hereditarily finite setx of depth greater
than 1 and the corresponding setsWTC(x) andsupp(x) in the following way.

The urelements belonging tosupp(x) are elementary or indecomposable
pieces ofx, the elements ofWTC(x) − {x} are composed pieces ofx. The setx it-
self is assembled, or composed, or aggregated successivelyfrom these two kinds of
pieces elementary and complex one according to membership relation∈ restricted to

Mathematical modeling of cortex 373

WTC(x) ∪ supp(x). Any (pictorial or verbal) presentation of this restriction of∈may
serve as a plan or an algorithm of an assembly ofx. If x is a model of a system, e.g.,
an organ in biology, the elements ofsupp(x) correspond to indecomposable pieces of
this system and the elements ofWTC(x)− {x} correspond to composed pieces of this
system.

Explanatory Comments 2 For a hereditarily finite set x the collection
{supp(y) |y ∈ WTC(x)} can represent spatial aspect ofx as a collection of sets
of regions of a space (on topological level of abstraction) in which pieces ofx are
placed. Hence the assignmenty 7→ supp(y) (y ∈WTC(x)) links assembly aspect ofx
represented byWTC(x) with spatial aspect ofx represented on topological level of
abstraction by{supp(y) |y ∈WTC(x)}.

2 Columnar and areal organization of cortex

In this section we discuss anatomical, spatial, and functional organization aspects of
cortex with a regard to conceptual approach to cortex modelsformation. We show how
cortex can be modelled in terms of hereditarily finite sets toprovide linking of these
aspects.

We begin the discussion with anatomical aspect of cortex. The columnar and areal or-
ganization of cortex described in [27], [39], discussed also in [8], [10], [23], [24], and
the proposed interpretation of hereditarily finite sets in Explanatory Comments 1 give
rise to the following main example of hereditarily finite sets.

Main example 1 Anatomical assembly of cortex with respect to its columnar and areal
organization can be modelled by hereditarily finite setxcortex of depth 4 such that

• xcortex itself is the set of all areas of cortex,
• areas of cortex are non-empty sets of hypercolumns of cortex,
• hypercolumns are non-empty sets of columns of cortex,
• columns are non-empty sets of neurons of cortex, where neurons are treated as

urelements.

We will discuss hypothetical properties ofxcortex by using the following auxiliary no-
tions.

Definition 2 A collection of sets forms a tree if and only if, for any two sets that belong
to the collection, either one is wholly contained in the other, or else they are wholly
disjoint. See [3].

374 Mathematical modeling of cortex

Remark 1 A lattice theoretical treatment of the above defined trees relates them in [25]
to ultrametric spaces, where a relationship is described byan isomorphism of appro-
priate categories mentioned directly in the title of [25]. For a survey of applications of
ultrametric spaces in biology and physics see e.g. [31].

Definition 3 For two elementsx, y of a collectionA of sets we say thatx is an imme-
diate subset ofy with respect toA if x is a proper subset ofy and there does not exist a
setz in A such thatx is a proper subset ofz andz is a proper subset ofy.

Definition 4 A hereditarily finite setx is a tree-like hereditarily finite set if the assign-
menty 7→ supp(y) (y ∈ WTC(x)) is an injection and{supp(y) |y ∈ WTC(x)} is a
tree.

Definition 5 We say that a hereditarily finite setx is a regular hereditarily finite set if
the assignmenty 7→ supp(y) (y ∈ WTC(x)) is an injection andz ∈ y implies that
supp(z) is an immediate subset ofsupp(y) with respect to{supp(y) |y ∈ WTC(x)}
for all y, z ∈WTC(x).

Definition 6 We define depth-homogeneous hereditarily finite sets by induction in the
following way:

• a depth-homogeneous hereditarily finite set of depth 1 is a finite non-empty set of
urelements,

• a depth-homogeneous hereditarily finite set of depthn+1 is a finite non-empty set
of depth-homogeneous hereditarily finite sets of depthn.

Artificial example 1 We present an example of depth-homogeneous hereditarily finite
sets of depth 3:

x =
{
{{1, 5}, {1, 4}, {1, 3}}, {{2, 4}, {1, 3}}, {{2, 4}, {2, 5}}

}
is a regular

hereditarily finite set but the collection{supp(y) |y ∈ WTC(x)} is not a tree and
hencex is not a tree-like hereditarily finite set.

Theorem 2.1 Every tree-like hereditarily finite set is a regular hereditarily finite set
but the converse is not true, i.e., there exist regular hereditarily finite sets which are not
tree-like hereditarily finite sets.

Proof One proves the theorem by induction on depth of hereditarilyfinite sets. The
setx in Artificial Example 1 is a regular hereditarily finite set which is not a tree-like
hereditarily finite set. 2

Mathematical modeling of cortex 375

Comment 1 A collection of sets which is a tree is a form of an idealized spatial (on
topological level of abstraction) organization of a systemmostly to simplify system anal-
ysis or system recurrent construction than to be a result of an evolutive natural process
of spatial adaptation of a system. This observation due to Ch. Alexander is contained
in his paper [3] concerning applications of tree structuresin city planning. Thus since
by Theorem 2.1 the notion of a regular hereditarily finite setis less restrictive than the
notion of a tree-like hereditarily finite set, we propose thefollowing hypothesis.

Hypothesis 1 The hereditarily finite setxcortex modelling cortex is a depth-homogeneous,
regular hereditarily finite set.

The assignmenty 7→ supp(y) (y ∈WTC(x)) establishes the links between anatomical
assembly aspect and spatial aspect of cortex forx = xcortex, see Explanatory Comments
2.

Functional organization aspect of cortex is modelled in [15], [39], [20], [21] by us-
ing more or less explicitly a graph of pathway connections between cortex areas. The
vertices of that graph of pathway connections are areas (or their labels, or names), the
edges are those ordered pairs of areas which are determined,among others, by func-
tionsµy,y′ : supp(y)× supp(y′)→ R ((y, y′) ∈ xcortex × xcortex) valued in the setR
of real numbers, where the valuesµy,y′(n, n′) describe strength of synaptic connection
between neuronsn ∈ supp(y) and n′ ∈ supp(y′). The graph of pathway connec-
tions determined by functionsµy,y′ ((y, y′) ∈ xcortex × xcortex) describing strength of
synaptic connections links functional organization aspect of cortex with its anatomical
and spatial aspects.

3 Multilevel (nested) neural networks and networks of
networks

In this section we discuss certain topic computational models of cortex which are based
on the concept of a system of nested neural networks described by J. P. Sutton et al.
in [37] and on the idea of a network of networks due to J. A. Anderson and J. P. Sutton
presented in [26], [5], [6].

We describe the concept of a system of nested neural networksand the idea of a network
of networks in terms of hereditarily finite sets by using the following notion.

Definition 7 For a natural numbern > 1 ann-level networkN is given by

• a depth-homogeneous tree-like hereditarily finite setxN of depthn, called the
underlying hereditarily finite set ofN,

376 Mathematical modeling of cortex

• a family of state interaction functions13 µy
z,z′ : supp(z)×supp(z′)→ R ((z, z′) ∈

(y × y) − ∆̇y and y ∈ WTC(xN) with depth(y) > 1) valued in the setR of
real numbers, wherė∆y = {(z, z) | z ∈ y} for depth(y) > 2 and ∆̇y = ∅ for
depth(y) = 2,

• two functionsσN, θN : supp(xN) → R which are state function and threshold
function ofN, respectively.

The underlying hereditarily finite setxN of ann-level networkN describes hierarchical
organization ofN, where the elements ofWTC(xN) correspond to clusters, see [37],
and indecomposable units ofN are urelements belonging tosupp(xN), e.g., neural
elements themselves or elementary processors. The state interaction functionsµy

z,z′ de-
scribe the strength of synaptic connections between neurons like functionsµy,y′ in Sec-
tion 2.

Corollary 1 LetN be ann-level network. Then

• for n = 2 the networkN is a network of networks understood as in[26], [5],
• for n > 2 and y ∈ xN one obtains an(n − 1)-level networkN[y] determined

byy such thaty is the underlying hereditarily finite set ofN[y], the family of state
interaction function ofN[y] is the restriction of the family of state interaction func-
tions of N to the case ofWTC(y), and the state function with threshold function
of N[y] are the restrictions of the state function and the thresholdfunction of N,
respectively, to the setsupp(y).

Thus forn > 2 an n-level networkN is a network of(n − 1)-level networksN[y]
(y ∈ xN) of (n − 2)-level networksN[y][z] (z ∈ y), etc., whereN[y] is immediately
nested inN andN[y][z] is immediately nested inN[y].

Proof The corollary is an immediate consequence of the definition of an n-level net-
work. 2

Theorem 3.1 For a natural numbern > 1, let N be ann-level network. Then there
exists a unique functionµ∗ : supp(xN) × supp(xN) → R such thatµ∗ ↾ supp(z) ×
supp(z′) = µy

z,z′ for all (z, z′) ∈ y × y − ∆̇y, y ∈WTC(xN), whereµ∗ ↾ supp(z)×
supp(z′) denotes the restriction ofµ∗ to the setsupp(z)× supp(z′).

Proof We prove the theorem by induction onn. 2

13corresponding to state interaction matrices in [5]

Mathematical modeling of cortex 377

Corollary 2 For a natural numbern > 1 an n-level networkN behaves globally as
a usual neural network whose state interaction function is that µ∗ which is given in
Theorem3.1.

Proof The corollary is an immediate consequence of Theorem 3.1. 2

Remark 2 Assume that we are given a neural network whose hierarchicalorganization
is represented by a depth-homogeneous tree-like hereditarily finite setx, wheresupp(x)
is the set of neurons of the network and{supp(y) |y ∈ WTC(x)} is the collection
of network regions. The network may contain neighbouring network regionssupp(z),
supp(z′) with {z, z′} ⊂ y ∈ WTC(x) for somey, where for all neuronsn ∈ supp(z)
andn′ ∈ supp(z′) there exists a synaptic connection betweenn andn′. And vice versa,
the network may contain regionssupp(z), supp(z′) which are far one to another such
that for all neuronsn ∈ supp(z) andn′ ∈ supp(z′) there does not exist any synaptic
connection. The above two cases of synaptic connection and its lack give rise to the
following definition.

Definition 8 By ann-level network with neighbourhood graphs we mean ann-level
networkN except it is completed by a new data which are neighbourhood graphsGy

(y ∈ WTC(x) with depth(y) > 1) and the family of state interaction functions is
restricted by the neighbourhood graphs such that

• the setV (Gy) of vertices ofGy is y itself, the setE(Gy) of edges ofGy is such
thatE(Gy) ⊂ (y × y)− ∆̇y for ∆̇y given as in Definition 7,

• the family of state interaction functionsµy
z,z′ : supp(z)× supp(z′)→ R is deter-

mined by neighbourhood graphs such that(z, z′) ∈ E(Gy) andy ∈ WTC(xN)
with depth(y) > 1.

The neighbourhood graphs are interpreted such that for(z, z′) ∈ (y× y)− ∆̇y but with
(z, z′) /∈ E(Gy) certainly for all neuronsn ∈ supp(z) andn′ ∈ supp(z′) there does
not exist any synaptic connection fromn into n′.

For ann-level network with neighbourhood graphs its neighbourhood graphs can be
illustrated by a Venn diagram of frontier disjoint balls, where the balls represent the el-
ements of the weak transitive closure of the underlying hereditarily finite set of the net-
work and the edges of the neighbourhood graphs are represented by the arcs connecting
the frontiers of the corresponding balls, e.g. Figure 10 in the paper [5] illustrates the
neighbourhood graph of corresponding 2-level network, seealso Figure 1 in [37] illus-
trating neighbourhood graphs of a 3-level network.

Corollary 3 LetN be ann-level network with neighbourhoodgraphsGy (y ∈WTC(xN)
with depth(y) > 1). ThenN determines an inductive construction of a family of graphs

378 Mathematical modeling of cortex

Gy (y ∈ WTC(xN)) with GxN as a final result such that the setV (Gy) of vertices of
Gy and the setE(Gy) of edges ofGy are given by

• V (Gy) = supp(y) for all y ∈WTC(xN),
• for y ∈WTC(xN) with depth(y) = 1

E(Gy) =
{
(a, b) ∈ V (Gy)× V (Gy) |µy′

y,y(a, b) > 0
}

if (y, y) ∈ E(Gy′

),

otherwiseE(Gy) = ∅, wherey′ is that unique element ofWTC(xN) for which
y ∈ y′,

• for y ∈WTC(xN) with depth(y) > 1

E(Gy) =
⋃{{

(a, b) ∈ V (Gy)× V (Gy) |µy
z,z′ (a, b) > 0

} ∣∣∣ (z, z′) ∈ E(Gy)

andz 6= z′
}
∪
⋃{

E(Gz) | z ∈ y
}
.

Proof The corollary is an immediate consequence of the definition of an n-level net-
work with neighbourhood graphs. 2

Remark 3 The construction in Corollary 3 is a generalization of the constructions of
an n-dimensional hypercube from the copies of hypercubes of dimensions less thann
for n > 3. For some mathematical treatment ofn-dimensional hypercubes see e.g. [12]
and for their applications see e.g. [33]. Some of the constructions of higher dimen-
sional hypercubes from the copies of hypercubes of low dimensions were pointed out by
Richard Feynman and Tamiko Thiel to apply these constructions among others for vi-
sual presentation of ‘constructive’ structure of higher dimensional hypercubes in [38].
The drawings of structures of 6-D hypercube, 9-D hypercube,and 12-D hypercube in
Chapter II of [38] can be treated intuitively as illustrations of those 2-level, 3-level, and
4-level networks with neighbourhood graphs, respectively, which determine the con-
structions (like in Corollary 3) of 6-D hypercube, 9-D hypercube and 12-D hypercube
from the copies of 3-D cube, respectively. The neighbourhood graphs of those 2-level,
3-level and 4-level networks are isomorphic to 3-D cube.

Remark 4 This remark is a hint for those who will approach modeling cortex be-
haviour by application of spiking neural P systems. The large number (about1011)
of neurons in human cortex and various structural cortex organizations (anatomical,
physiological, and functional one) suggest to approach modeling of cortex behaviour
by application of (higher level) networks of spiking neuralP systems in a similar way
as networks of networks are applied, cf. [6]. It is worth to investigate those spiking
neural P systems whose sets of neurons and synapses form synfire braids and chains,
cf. [7], [14]. The discussion illustrated by Figure 16 in Section 5 of [1] suggests that a
concept of ann-level network of spiking neural P systems with their sets ofneurons and

Mathematical modeling of cortex 379

synapses forming synfire chains may appear useful to model compositionality ability of
brain by binding synfire chains. Namely, one may consider those higher level constructs
(similar to construct illustrated by Figure 16 in Section 5 in [1]) which are described
in terms of spiking neural P systems whose neurons and synapses form ann-level net-
work with neighbourhood graphs, where the levels of its hierarchical organizationation
(with respect to nesting relation in Corollary 1) may correspond to the abstraction levels
of image perceiving and processing from pixel-level, then local feature level, structure
(edge) level, object level, to object set level and scene characterization level. It gives rise
to an open problem, which is a variant of Temporal Correlation Hypothesis of Visual
Feature Integration formulated e.g. in [18], whether hierarchical organizationation of
those higher level constructs is determined by spiking trains reached in those learning
processes, e.g. in [19], which respect hierarchical organizationation like in [13].

Conclusion. The common ground language for linking various aspects of cortex mod-
els, proposed in the paper, concerns mainly the models respecting columnar and areal
organization of cortex but neuroscience and related fields contain a lot of other models
different from those which are based on columnar and areal cortex organization. Look-
ing forwards, the proposed common ground language could be anode of a future net
(or web) of common ground languages aimed to provide a discourse between meth-
ods, treatments, and approaches, all respecting various motivations, to cortex models
formation from:

• cortex models due to E. Bienestock in [7] based on synfire chains and braids,
• the models in [32] extending the hierarchical organizationof cortex pointed out by

D. H. Hubel and T. N. Wiesel, where there are specified the level of simple cells
(neurons), the level of complex cells, and the level of hypercomplex cells such that
a complex cell responds to some assembly of simple cells, anda hypercomplex
cell responds to some assembly of complex cells,

• neural net models using tensor product in [30], [36], and motivated by problems of
linguistics,

• the models of brain memory inspired by the idea of spin glass models in physics,
see [31] and Introduction to [37],

to the models inspiring construction of distributed systems realizing massively parallel
computations, cf. [6], [26], and neoperceptron due to K. Fukushima [16].

That future net could be a platform for mutual inspiration between neuroscience and
other disciplines and fields of research and engineering, e.g., city planning, where gen-
eral aspects of harmony-seeking computations and evolutive processes of spatial adap-
tation are discussed, cf. [2].

Maybe one could form that future net of common ground languages in a similar way
to the networks of patterns forming pattern languages, due to Ch. Alexander, discussed

380 Mathematical modeling of cortex

in [4]. It is worth to point here that the idea of pattern languages has already inspired
computer scientists to similar constructions in the area ofobject programming, cf. [9].

Bibliography

[1] Abeles, M., Hayon, G., Lehmann, D.,Modeling compositionality by dynamic bind-
ing synfire chains, Journal of Computational Neuroscience 17 (2004), pp. 179–
201.

[2] Alexander, Ch.,Harmony-Seeking Computations, to be published in the Interna-
tional Journal of Unconventional Computation, see also
http://www.livingneighborhoods.org

[3] Alexander, Ch.,A city is not a tree, Architectural Forum 122 (1965), No. 1, pp. 58–
61; No. 2, pp. 58–62;http://www2.rudi.net/bookshelf/classics/
city

[4] Alexander, Ch.,Pattern Languages, Oxford Univ. Press, New York 1977.
[5] Anderson, J. A.,Arithmetic on a Parallel Computer: Perception Versus Logic,

Brain and Mind 4 (2003), pp. 169–188.
[6] Anderson, J. A.,A Brain-Like Computer for Cognitive Software Applications: The

Ersatz Brain Project, http://www.ErsatzBrain.org
[7] Bienestock, E.,A model of neocortex, Network: Computation in Neural Systems

6 (1995), pp. 179–224.
[8] Buxhoeven, D. P., Casanova, M. F.,The minicolumn hypothesis in neuroscience,

Brain 125 (2002), pp. 935–951.
[9] Coplien, J. O.,Software Patterns, SIGS Books & Multimedia, New York 2000.

[10] Cürüklü, B., Lansner, A.,An Abstract Model of a Cortial Hypercolumn, in: Proc.
of International Conference on Neural Information Processing (ICONIP’02), Sin-
gapore, IEEE 2002, pp. 80–85.

[11] De Pisapia, N.,Gandy Machines: an Abstract Model for Parallel Computations,
for Turing Machines, the Game of Life, and Artificial Neural Networks, M.S. The-
sis, Carnegie Mellon Univ., Pittsburgh 2000,http://artsci.wustl.edu/˜
ndepisap

[12] Domshlak, C.,On recursively directed hypercubes, Electron. J. Combin. 9 (2002),
#R23.

[13] Dotsenko, V. S.,Hierarchical model of memory, Physica 140A (1986), pp. 410–
415.

[14] Doursat, R., Bienestock, E.,Neocortial self-structuration as a basis for learn-
ing, in: 5th International Conference on Development and Learning (ICDL 2006),
Bloomington, Indiana (to appear).

[15] Felleman, D. J., Van Essen, D. C.,Distributed hierarchical processing in the pri-
mate cerebral cortex, Cerebral Cortex 1 (1991), No. 1, pp. 1–47.

[16] Fukushima, K.,Neocognitron: A hierarchical neural network capable of visual
pattern recognition, Neural Networks 1 (1988), No. 2, pp. 119–130.

Mathematical modeling of cortex 381

[17] Gandy, R.,Church’s thesis and principles for mechanisms, in: The Kleene Sym-
posium, eds. J. Barwise et al., North-Holland, Amsterdam 1980, pp. 123–148.

[18] Gray, C. M.,The temporal correlation hypothesis of visual feature integration still
alive and well, Neuron 24 (1999), pp. 31–47.

[19] Gutierez-Naranjo, M. A., and Perez-Jimenez, M. J.,A spiking neural P systems
based model for Hebbian learning, this volume.

[20] Hilgetag, C.-C., O’Neill, M. A., Young, M. P.,Indeterminate organization of the
virtual system, Science 271 (1996), pp. 776–777.

[21] Hilgetag, C.-C., O’Neill, M. A., Young, M. P.,Hierarchical organization of macaque
and cat cortial sensory systems explored with a novel network processor, Phil.
Trans. Royal Soc. London, B 355 (2000), pp. 71–89.

[22] Ionescu, M., Păun, Gh., Yokomori, Y.,Spiking neural P systems, Fund. Inform.
71 (2006), pp. 279–308.

[23] Johansson, Ch.,An Attractor Memory Model of Neocortex, Ph.D. Thesis, Royal
Institute of Technology, Stockholm 2004.

[24] Johansson, Ch., Lansner, A.,Towards cortex sized artificial nervous systems, in:
Proc. Knowledge-Based Intelligent Information and Engineering Systems, KES’04,
Lecture Notes in Artificial Intelligence 3213, Springer, Berlin 2004, pp. 959–966.

[25] Lemin, A. J.,The category of ultrametric spaces is isomorphic to the category of
complete, atomic, tree-like, and real graduate latticesLAT∗, Algebra Universalis
50 (2003), pp. 35–49.

[26] Ling Guan, Anderson, J. A., Sutton, J. P.,A network of networks processing model
for image regularization, IEEE Transactions on Neural Networks 8 (1997), No. 1,
pp. 169–174.

[27] Mountcastle, V. B.,The columnar organization of the neocortex, Brain 120 (1997),
pp. 701–722.

[28] Mountcastle, V. B., Introduction to special issue on cortial columns, Cerebral Cor-
tex 13 (2003), No. 1, pp. 2–4.

[29] Păun, Gh., Perez-Jimenez, M. J.,Spiking neural P systems. Recent results, re-
search topics, in: 6th Brainstorming Week on Membrane Computing, Sevilla2008,
web page.

[30] Prince, A., Smolensky, P.,Optimality: from neural networks to universal grammar,
Science 275 (1997), 14 March, pp. 1604–1610.

[31] Rammal, R., Toulouse, G., Virasoro, M. A.,Ultrametricity for physicists, Rev.
Modern Phys. 58 (1986), pp. 765–788.

[32] Reisenhuber, M., Poggio, T.,Hierarchical models of object recognition in cortex,
Nature Neuroscience 11 (1999), pp. 1019–1025.

[33] Seitz, Ch. L.,The cosmic cube, Comm. ACM 28 (1985), pp. 22–33.
[34] Sieg, W.,Computability Theory, Seminar Lectures, University of Bologna, Novem-

ber 2004,
http://www.phil.cmu.edu/summerschool/2006/Sieg/comp uta
bility theory.pdf

[35] Sieg, W.,Calculations by man and machine: conceptual analysis, Lecture Notes
in Logic 15, Berlin 2002, pp. 390–409.

382 Mathematical modeling of cortex

[36] Smolensky, P.,Tensor product variable binding and the representation of symbolic
structures in connectionist systems, Artificial Intelligence 46 (1990), pp. 159–216.

[37] Sutton, J. P., Beis, J. S., Trainor, L. E. H.,Hierarchical model of memory and
memory loss, J. Phys. A: Math. Gen. 21 (1988), pp. 443–445.

[38] Thiel, T.,The design of the connection machine, Design Issues 10 (1994), pp. 5–
18; see alsohttp://www.mission-base.com/tamiko/cm/cm arti
cles.html .

[39] Van Essen, D. C., Maunsell, J. H. R.,Hierarchical organization and functional
streams in the virtual cortex, Trends in NeuroScience, September 1983, pp. 370–375.

Toward a wet implementation for τ -DPP

———————————————
Dario Pescini, Paolo Cazzaniga, Claudio Ferretti, Giancarlo Mauri

Università degli Studi di Milano-Bicocca,
Dipartimento di Informatica, Sistemistica e Comunicazione,
Viale Sarca 336, 20126 Milano, Italy
{cazzaniga, ferretti, mauri, pescini }@disco.unimib.it

In the last decade, different computing paradigms and devices inspired by bi-
ological and biochemical systems have been proposed. Here,we recall the no-
tions of membrane systems and the variant ofτ -DPP. We introduce the frame-
work of chemical computing, in order to show how to describe computations by
means of a chemical reaction system. Besides the usual encoding of primitive
boolean functions, we also present encodings for instructions of register machi-
nes. Discussion will consider how this computing components can then be parts
of a more complex chemical computing system, with a structure based on the
membrane structure ofτ -DPP systems, to move toward a wet implementation
using the micro reactors technology. Our work thus exploitsthe close relation
between such chemical processes andτ -DPP systems.

1 Introduction

In the recent years, several computational models derived from the formal abstraction
of chemical reacting systems, such as the chemical abstractmachine [3], and other in-
spired by the structure and functioning of living cells, have been proposed. One of
these models, introduced in [14], is called P systems. The basic definition of P systems,
also called membrane systems, consists of a hierarchical structure composed by sev-
eral membranes. Inside every compartment, delimited by membranes, a set of evolution
rules is placed. The rules (in particular, multiset rewriting rules) are used to describe the
evolution of the objects occurring inside the system, whichdescribe the state.

Among the different variants of P systems, here we considerτ -DPP, presented in [5].
Within the framework ofτ -DPP, the probabilities are associated to the rules, following
the method described by Gillespie in [7]. Moreover,τ -DPP extends the tau-leaping pro-
cedure [4] in order to quantitatively describe the behaviour of complex biological and
chemical systems, embedded in membrane structures composed by different volumes.

This kind of chemical reacting systems, can be also implemented using micro reactors.
Micro reactors [9], are laboratory devices composed of several reacting volumes (re-

384 Toward a wet implementation for τ -DPP

actors) with a volume at the scale of theµl, connected by channels used to transport
molecules.

The aim of this work is to show the correspondence betweenτ -DPP and chemical react-
ing systems occurring inside micro reactors. The close relation between the topological
description of the two systems is clear, that is, both are composed by several volumes,
and among these volumes it is possible to communicate molecules. Again, the approach
based on multiset rewriting rules, that characterisesτ -DPP, is similar to the chemical
reacting process occurring within a micro reactor. Furthermore, bothτ -DPP and chem-
ical reacting systems emphasise the intrinsic stochasticity of chemical processes. The
“noise” associated to the stochastic behaviour, rules the system dynamics at the micro-
scales. At this scale, the small volumes and the high dilutions realize a system in which
particles interaction should be described in a discrete fashion. Finally, the communica-
tion processes described by means of communication rules within τ -DPP, are strictly
related to the channels interconnecting the reactors.

In this paper, we show how these analogies can be exploited toconstruct a wet im-
plementation of P systems (in particular, ofτ -DPP) and its feasibility. To obtain a
description ofτ -DPP that can be implemented using micro reactors, the encoding of
boolean functions and register machine through chemical reactions, following the chem-
ical computing principles, can be exploited.

Chemical computing [6] is a technique used to process information by means of real
molecules, modified by chemical reactions, or using electronic devices programmed
following principles taken from chemistry. Moreover, in chemical computing, the result
of a computation is an emergent global behaviour based on theapplication of small
systems characterised by chemical reactions.

Exploiting the definition of chemical network, the description of a system, as a set of
reactions applied to a given set of molecular species, can begiven. Moreover, with
the chemical organisation theory, the set of (so called) organisations, within the set of
molecular species, can be identified and then used to describe the behaviour of such
system, as the movement between the organisations.

Note that, within the framework of chemical computing, every boolean function can be
expressed by means of chemical reactions, hence, every problem can be encoded using
a set of reactions.

A different kind of problem encoding will be then presented,this is based on the in-
structions of register machines [13]. This approach is similar to the one related to the
chemical computing field. The idea is to use a set of chemical reactions to describe the
instructions of the register machines. For instance, in thesubsection 4.4, the description
and the simulation of a decrement instruction, is presented.

The paper is organised as follows: in Section 2, membrane systems and its variant of

Toward a wet implementation for τ -DPP 385

τ -DPP are explained. The chemical computing framework and chemical organisation
theory are presented in Section 3. In Section 4, we show the results of the simulations
of the small components used to describe bigger systems, such as XOR and NAND
logic circuits, and the decrement instruction of a registermachine. We conclude with
some discussion in Section 5.

2 Membrane systems and τ-DPP

In this section we describe the framework of membrane systems, or P systems [15],
recalling their basic notions and definitions.

We then presentτ -DPP, a computational method firstly introduced in [5], usedto de-
scribe and perform stochastic simulations of complex biological or chemical systems.
The “complexity” of the systems managed by means ofτ -DPP, is not only related to
the number of the reactions (rules) and species (objects) involved, but it results from the
topological structure of the system, that can be composed bymany volumes. Generally
speaking, the systems described usingτ -DPP are represented through multiset rewriting
rules placed inside the volumes forming the system structure.

2.1 Membrane systems P systems, or membrane systems, were introduced in [14]
as a class of unconventional computing devices of distributed, parallel and nondeter-
ministic type, inspired by the compartmental structure andthe functioning of living
cells.

In order to define a basic P system, three main parts need to be introduced: themem-
brane structure, theobjectsand therules.

Themembrane structuredefines the framework where multisets of objects are placed,
and evolve by means of evolution rules. Another feature of the membrane structure is
related to the management of objects communication among different membranes, us-
ing particular evolution rules. The definition of membrane structure is given through
a set of membranes with a distinct label (usually distinct numbers), hierarchically or-
ganized inside a unique membrane, namedskin membrane. Among others, a represen-
tation of a membrane structure is given by using a string of square parentheses. Every
pair of matching parentheses is placed inside a special pair, denoting the skin membrane.
Hence, every pair characterises a membrane of the system.

For instance, the stringµ = [0 [1 [2 [3]3]2]1 [4]4]0, represents a membrane structure
composed by 5 membranes, organised in four hierarchical levels. Moreover, the same
membrane structure can be represented by the stringµ′ = [0 [4]4 [1 [2 [3]3]2]1]0,
hence, two pairs of matching parentheses, placed at the samehierarchical level, can
be interchanged, together with their contents. This means that the order of pairs of
parentheses is irrelevant, whereas their respective relationships are important.

386 Toward a wet implementation for τ -DPP

Each membrane identifies aregion, delimited by it and the adjacent membranes, possi-
bly present inside it. The number of membranes in a membrane structure is called the
degreeof the P system. Finally, the whole space outside the skin membrane is called the
environment.

The internal state of a P system is described by theobjectsoccurring inside the mem-
branes. An object can be either a symbol or a string over a specified and fixed finite
alphabetV . In order to denote the presence of multiple copies of objects inside the
membranes, multisets are usually used. A multiset consistsof two components: the
base set identifying the elements that constitute the multiset, and a function associat-
ing to each element its multiplicity in the multiset. In the framework of P systems, the
multiset associated with membranei is a mapMi : V → N.

The objects occurring inside the membranes of a P systems, specified with multisetsMi,
are transformed by means ofevolution rules. These rules are multiset rewriting rules of
the formri : u → v, whereu andv are multisets of objects. The meaning of a rule is
that the multisetu is modified into the multisetv; moreover, it is possible to associate to
v the target of the rule, that is the membrane where the multiset is placed when the rule
is applied. There are three different types of target. If thetarget ishere, then the object
remains in the region where the rule is executed. If the target is out, then the object is
sent out from the membrane containing the rule and placed to the outer region. Note
that, if a rule with this target indication is applied insidethe skin membrane, then the
object is sent to the environment. If the target isinj, wherej is a label of a membrane,
then the object is sent into the membrane labelled withj. It is possible to apply this kind
of rule, only if the membranej is immediately inside the membrane where the rule is
applied.

Starting from an initial configuration (described by a membrane structure containing
a certain number of objects and a fixed set of rules), and letting the system evolve, a
computation is obtained. A universal clock is assumed to exist: at each step, all rules
in all regions are simultaneously applied to all objects which are the subjects of evo-
lution rules. So doing, the rules are applied in a maximal parallel manner, hence the
membranes evolve simultaneously. If no further rule can be applied, the computation
halts. The result of a computation is the multiset of objectscontained into anoutput
membraneor emitted from the skin of the system to the environment.

For a complete and extensive overview of P systems, we refer the reader to [15], and to
the P Systems Web Page (http://ppage.psystems.eu).

2.2 τ -DPP We now introduce a novel stochastic simulation technique called τ -DPP
[5]. The aim ofτ -DPP is to extend the single-volume algorithm of tau-leaping [4], in
order to simulate multi-volume systems, where the distinctvolumes are arranged ac-
cording to a specified hierarchy. The structure of the systemis required to be kept fixed
during the evolution. In Section 2.1, we shown that the framework of membrane sys-

Toward a wet implementation for τ -DPP 387

tem satisfies this requirement, hence, the spacial arrangement of P system is exploited
in the descriptionτ -DPP. In particular, there is a close correspondence between τ -DPP
and a variant of P system called dynamical probabilistic P systems (DPP). DPP were
introduced in [18]: they exploit the membrane structure of Psystems but they associate
probabilities with the rules, and such values vary (dynamically), according to a pre-
scribed strategy, during the evolution of the system. For the formal definitions of DPP
and examples of simulated systems, we refer the reader to [16,17,1,2].

There is a difference between DPP andτ -DPP: the former provides only a qualitative
description of the analysed system while the latter is able to give a quantitative de-
scription. Though, the need for an accuratequantitativetool, led to the definition of
τ -DPP [5]. This approach is designed to share a common time increment among all the
membranes, which allows to generate an accurate distribution of rules in each compart-
ment. This improvement is achieved using, inside the membranes ofτ -DPP, a modified
tau-leaping algorithm, which gives the possibility to simulate the time evolution of every
volume as well as that of the entire system.

The internal behaviour of the membranes, is therefore described by means of a modi-
fied tau-leaping procedure. The original method, first introduced in [8], is based on the
stochastic simulation algorithm (SSA) presented in [7]. These approaches are used to
describe the behaviour of chemical systems, computing the probabilities of the reac-
tions placed inside the system and the length of the step (at each iteration), according to
the current system state. While SSA is proved to be equivalent to the Chemical Master
Equation (CME), therefore it provides the exact behaviour of the system, the tau-leaping
method describes an approximated behaviour with respect tothe CME, but it is faster
for what concerns the computational time required.

As previously said, inτ -DPP we exploit a modified tau-leaping algorithm, in order to
describer the correct behaviour of the whole system. This isachieved by letting all the
volumes evolve in parallel, through a strategy used to compute the probabilities of the
rules (and then, to select the rules that will be executed), and to choose the “common”
time increment that will be used to update the system state.

The method applied for the selection of the length of the timestep is the following.
Each membrane independently computes a time increment, based on its internal state
(exploiting the tau-leaping procedure). The smallest timeincrement is then selected
and used to describe the evolution of the whole system, during the current iteration.
Since all volumeslocally evolve according to the same time increment,τ -DPP is able
to correctly work out theglobaldynamics of the system. Moreover, using the “common”
time increment inside the membranes, it is possible to manage the communication of
objects among them. This is achieved because the volumes arenaturallysynchronised
at the end of each iterative step, when all the rules are executed.

The modified tau-leaping procedure ofτ -DPP is used to select the time increment that
will govern the evolution of the system as well as the set of rules that will be executed

388 Toward a wet implementation for τ -DPP

during the current leap. Furthermore, in order to describe the correct behaviour of the
membranes and of the entire system, all the volumes have to independently select the
kind of evolution they will follow. The membrane can evolve in three different manners
(as described in [4]): executing either (1) a SSA-like step,or (2) non-critical reactions
only, or (3) a set of non-critical reactions plus one critical reaction. A reaction is critical,
if its reactants are present inside the system in very small amounts. The critical and non-
critical reaction sets are identified at the beginning of every iteration. The separation of
these two sets is needed in order to avoid the possibility of obtaining negative quantities
after the execution of the rules (we refer the reader to [8] for more details).

After this first stage of the procedure, the membranes selectthe rules that will be used to
update the system, exploiting the common time increment previously chosen. A detailed
description of the algorithm will be given later on.

Formally, aτ -DPPΥ is defined as

Υ = (V1, . . . , Vn, µ,S, M1, . . . , Mn, R1, . . . , Rn, C1 . . . Cn),

where:

• V1, . . . , Vn are the volumes of the system,n ∈ N;
• µ is a membrane structure representing the topological arrangement of the vol-

umes;
• S = {X1, . . . , Xm} is the set of molecular species,m ∈ N, that is, the alphabet of

the system;
• M1, . . . , Mn, are the sets of multisets occurring inside the membranesV1, . . . , Vn,

representing the internal state of the volumes. The multisets Mi (1 ≤ i ≤ n) is
defined overS∗;

• R1, . . . , Rn are the sets of rules defined in volumesV1, . . . , Vn, respectively. A
rule can be of internal or of communication type (as described below);

• C1, . . . , Cn are the sets of stochastic constants associated to the rulesdefined in
volumesV1, . . . , Vn.

Inside the volumes of a system described by means ofτ -DPP, two kind of evolution
rules can be placed. These rules are calledinternal andcommunicationrules. Internal
rules describe the evolution of objects that remain in the same region where the rule
is executed. Communication rules, send objects from the membrane where they are
applied to an adjacent volume. Moreover they can also modifythe objects during the
communication process.

The sets of stochastic constantsC1, . . . , Cn, associated to the set of rulesR1, . . . , Rn,
are needed to compute the probabilities of the rule applications (also called propensity
functions), along with a combinatorial function dependingon the left-hand side of the
rule [7].

Toward a wet implementation for τ -DPP 389

The general form of internal and communication rules isα1S1 +α2S2 + · · ·+αkSk →
(β1S1 +β2S2 + · · ·+βkSk, target), whereS1, . . . , Sk ∈ S are the objects involved in
the rule andα1, . . . , αk, β1, . . . , βk ∈ N are the coefficients associated to the objects.
Note that we will usually consider the case where at most three objects appear in the
left-hand side of the rule. This assumption is related to thefact that the probability of
the combination of more than three objects is close to zero.
The target of the rules occurring inside the volumes of aτ -DPP can be one of the
following:

• here: the objects are modified and remain in the volume where the rule is applied
(internal rule)

• out: this means that the products of the rule are “sent outside” the source volume,
where the rule is applied, to the adjacent outer volume;

• inlabel: this means that the products of the rule are “sent inside” the volume with
the label specified in the target. This kind of rules are only allowed ifthe target
volume is placed inside the source membrane, and the two volumes are adjacent
(that is, there exists no other volume placed between the source and the target
volume).

• in: this means that the products of the rule are nondeterministically sent to any of
the volumes placed inside the source membrane. This kind of rule can be used in-
stead of a set of rules with specific targetsinlabel (one rule for each inner volume).

Another difference between internal and communication rules is related to the time
increment (τ) computation. In the procedure used to computeτ , while internal rule are
involved using both left-hand and right-hand sides, in the case of communicating rules,
the method considers only their left-hand side. This distinction is needed because the
right-hand side of internal rule modifies the internal stateof the membrane where the
rule is applied whereas the right-hand side of communicating rule affects the state of
another membrane, hence it is not considered during theτ computation.

Obviously, the right-hand side of communication rules willcontribute to the update of
the system state, which takes place at the end of the iteration step, and will be therefore
considered to determine the state of the target volume for the next iteration step.

We now describe theτ -DPP algorithm needed to simulate the evolution of the entire
system. Each step is executedindependentlyand in parallel within each volumeVi

(i = 1, . . . , n) of the system. In the following description, the algorithmexecution
naturally proceeds according to the order of instructions,when not otherwise specified
by means of “go to” commands.

Step 1. Initialisation: load the description of volumeVi, which consists of the initial
quantities of all object types, the set of rules and their respective stochastic con-
stants.

390 Toward a wet implementation for τ -DPP

Step 2.Compute the propensity functionaµ of each rulerµ, µ = 1, . . . , m, and evalu-
ate the sum of all the propensity functions inVi, a0 =

∑m
µ=1 aµ. If a0 = 0, then

go tostep 3, otherwise go tostep 5.
Step 3.Setτi, the length of the step increment in volumeVi, to∞.
Step 4.Wait for the communication of the smallest time incrementτmin = min{τ1, . . . ,

τn} among those generated independently inside all volumesV1, . . . , Vn, during
the current iteration, then go tostep 13.

Step 5.Generate the step sizeτi according to the internal state, and select the way to
proceed in the current iteration (i.e. SSA-like evolution,or tau-leaping evolution
with non-critical reactions only, or tau-leaping evolution with non-critical reactions
and one critical reaction), using the selection procedure defined in [4].

Step 6.Wait for the communication of the smallest time incrementτmin = min{τ1, . . . ,
τn} among those generated independently inside all volumes, during the current it-
eration. Then:

- if the evolution is SSA-like and the valueτi = τSSA generated inside the
volume is greater thanτmin, then go tostep 7;

- if the evolution is SSA-like and the valueτi = τSSA is equal toτmin, then go
to step 10;

- if the evolution is tau-leaping with non-critical reactions plus one critical re-
action, and the valueτi = τnc1c is equal toτmin, then go tostep 11;

- if the evolution is tau-leaping with non-critical reactions plus one critical re-
action, and the valueτi = τnc1c is greater thanτmin, then go tostep 12;

- if the evolution is tau-leaping with non-critical reactions only (τi = τnc), then
go tostep 12.

Step 7.ComputeτSSA = τSSA − τmin.
Step 8.Wait for possible communication of objects from other volumes, by means of

communication rules. If some object is received, then go back to step 2, otherwise
go tostep 9.

Step 9.Setτi = τSSA for the next iteration, then go back tostep 6.
Step 10.Using the SSA strategy [7], extract the rule that will be applied in the current

iteration, then go tostep 13.
Step 11.Extract the critical rule that will be applied in the currentiteration.
Step 12.Extract the set of non-critical rules that will be applied inthe current iteration.
Step 13.Update the internal state by applying the extracted rules (both internal and

communication) to modify the current number of objects, andthen check for ob-
jects (possibly) received from the other volumes. Then go back tostep 2.

The algorithm begins loading the initial conditions of the membrane. The following
operation is the computation of the propensity functions (and the sum of them) in order
to check if, inside the membrane, it is possible to execute some reaction. If the sum
of the propensity functions is zero, then the value ofτ is set to∞ and the membrane
waits for the communication of the smallestτ computed among the other membranes
(τmin) in order to synchronise with them and then checks if it is thetarget of some

Toward a wet implementation for τ -DPP 391

communication rule applied inside the other volumes. Theseoperations are needed in
order to properly update the internal state of the membrane.

However, if the sum of all the propensity functions is greater than zero, the membrane
will compute aτ value based only on its internal state, following the first part of the
original tau-leaping procedure [4]. Besides this operation, the membrane selects the
kind of evolution for the current iteration (like the computation ofτ , this procedure is
executed independently from the other volumes).

The algorithm proceeds toStep 6, where the membrane receives the smallestτ value
computed by the volumes. This will be the common value used toupdate the state of
the entire system. It is necessary to proceed inside every membrane using the same time
increment, in order to manage the communication of objects.

At this stage, the membrane knows the length of the time step and the kind of evolution
to perform. The next step consists in the extraction of the rules that will be applied in
the current iteration. In order to properly extract the rules, several conditions need to be
checked.

In the case the membrane is evolving using the SSA strategy: if τmin is the value gener-
ated inside of it, then it is possible to extract the rule, otherwise the execution of the rule
is not allowed, because the step is “too short”. In the next stage, the membrane verifies
for possible incoming objects, to update its internal stateaccording to the communi-
cation rules (possibly) executed inside the other regions.Finally, if its state is changed
(according to some internal or communication rule), then the membrane, in the succes-
sive iteration, will compute a new value ofτ . On the contrary, the value of the time
increment used, will be the result of the application ofStep 7of the algorithm.

If the evolution strategy corresponds to a tau-leaping stepwith the application of a set
of non-critical reactions and one critical reaction, the algorithm verifies if the value ofτ
computed by the membrane is equal toτmin. If this is true, the membrane selects the set
of non-critical reactions to execute as well as the criticalreaction. The execution of the
critical reaction is allowed because, hereτmin represents the time needed to execute it.
On the other hand, the application of the critical reaction is forbidden and the membrane
will execute non-critical reactions only.

If the membrane is following the tau-leaping strategy with the execution of non-critical
reactions only,τmin is used to extract the rules (belonging to the set of non-critical) to
apply in the current iteration.

The last step is the system update. Here every membrane executes the selected rules
and update its state according to both internal and communication rules. This step is
executed in parallel inside every membrane, therefore it ispossible to correctly manage
the passage of objects and to synchronise the volumes.

392 Toward a wet implementation for τ -DPP

3 Chemical computing

In this section we introduce the basic notions of chemical computing systems and chem-
ical organisation theory, showing how to exploit them, together with membrane systems,
in order to obtain a representation suitable for the wet implementation of the problem
in analysis, using micro reactors.

Biological systems are characterised by different mechanisms, employed in their evo-
lution, that are able to process information. This methods are: robust, self-organising,
adaptable, decentralised, asynchronous, fault-tolerantand evolvable. The global infor-
mation process comes from the application, inside the biological system, of a large
number of simple components. In particular, information istransformed by means of
chemical processes, and for this reason, chemical reactions have been used to build a
novel computational paradigm [6]. This new approach is called chemical computing,
and it is related to the computation with real molecules as well as the electronic devices,
programmed using principles taken from chemistry

In general, the analysis of the solutions of chemical reaction processes, is hard because
of its nonlinearity. The same problems are related to the analysis of biological systems
since the behaviour of local parts can be very different fromthe global behaviour.

In order to work out this problem, the notions of chemical organisation theory can be
used to obtain the emergent behaviour of the system, starting from its small components,
hence linking the evolution governed by every single reaction rule with the global dy-
namics of the system.

Chemical organisation theory is used to identify a hierarchy of self maintaining sub-
networks, belonging to a chemical reaction network. These sub-networks are called
organisations. In particular, a chemical organisation is aset of molecular species that is
algebraically closed and stoichiometrically self-maintaining. To define the organisations
and the properties of this particular type of sub-network, we first need to introduce
reaction networks.

A reaction networkis a tuple〈M,R〉, whereM is a set of molecular species and
R is a set of reactions (also called rules). The rules inR are given by the relation
R : PM(M) × PM(M) wherePM(M) denotes the set of all the multisets of the
elements inM. The general form of a reaction isα1m1 + α2m2 + · · · + αkmk →
β1m1 + β2m2 + · · · + βkmk, wherem1, . . . , mk ∈ M are the molecular species
involved in the rule andα1, . . . , αk, β1, . . . , βk ∈ N are the coefficients associated to
the molecules.

As previously said, a set of molecular species belonging toR is called organisation, if
the properties of closure and self-maintenance are satisfied. Here we report an informal
definition of these properties, we refer the reader to [12], for formal definitions and
further details.

Toward a wet implementation for τ -DPP 393

A set of molecular speciesC ∈ R is closed, if its elements are involved in reactions that
produce only molecular species of the setC. On the other hand, theself-maintenance
property is satisfied when the molecules consumed by the reactions involved in the set,
can also be produced by some other rule related to the self-maintaining set. Note that, in
order to find the organisations of a chemical network, only stoichiometric information
(set of rules) is needed.

The set of organisation of a chemical network, can be exploited to describe the dynamics
of the system, by means of the movement among its elements. Inparticular, only the
algebraic analysis of chemical organisation is needed in order to obtain the behaviour
of the system. This analysis consists in the study of processes where molecular species
appear or disappear from the system (that is, when their amount become positive or go
to zero). Furthermore, the behaviour of the system, as described above, can either take
place spontaneously or can be induced by means of external events, such as the addition
of input molecules.

If we want to use these reaction networks to compute, we will assume to describe a com-
putational problem by means of a boolean function, which in turn can be computed as
a composition of many simple functions, such as the binary NAND. Therefore, we will
create a reaction network (called boolean network), based on a set of boolean functions
and boolean variables.

We define a boolean network using a set ofM boolean functions and a set ofN (with
N ≥ M) boolean variables{b1, . . . , bM , . . . , bN}. The variablesbj , such that1 ≤ j ≤
M , are determined by the boolean functions (they are also called internal variables).
The remaining variables (bj such thatM < j ≤ N) represent the input variables of the
boolean network. The values computed by the set ofN boolean functions, are defined
as{bi = Fi(bq(i,1), . . . , bq(i,ni)) with i = 1, . . . , M}. bq(i,k) is the value of the boolean
variable corresponding to thek-th argument of thei-th function. In general, the function
Fi hasni arguments, therefore, there are2ni different input combinations. The truth
tableTi of the functionFi is then composed by2ni rows andn + 1 columns, where the
first n columns contain values for the arguments of the function andthe last one is the
corresponding output.

Given a boolean network (as described above), the associated reaction network〈M,R〉
is defined ad follows. For each boolean variablebj, we add two different molecular
species toM, representing the values0 and1 of the variable. In particular, lowercase
letters are used for the molecular species representing thevalue0 and uppercase letters
for the value1 of the variables. Therefore, the setM contains2N molecular species.
The setR of rules, is composed by two kinds of reactions:logical and destructive.
Logical reactions are related to the rows of the truth tablesof the functions involved
in the boolean network; hence the left-hand side of the rule represents the input values
of the boolean function, while the right-hand side is the output value. The destructive
reactions are needed to avoid the possibility to have, inside the system, two molecular
species representing both states of the same variable at thesame time (i.e. two molecules

394 Toward a wet implementation for τ -DPP

representing the state0 and1 of the same boolean variable). In this case, the state of the
variable becomes undefined, and a rule that degrades the two corresponding molecular
species, is required.

The resulting chemical network〈M,R〉 implements the boolean network without in-
puts specified. The input variables of the boolean network must be externally initialised
because they are not set by the boolean functions. The initialisation is encoded by means
of inflow reactions. These reactions are zero-order reactions producing substances from
the empty set.

4 Building and simulating component reaction networksin τ-DPP

To lay out our path from a model of computation to a chemical computing device, we
build and simulate smallτ -DPP systems using techniques inspired by the literature on
reaction systems [6, 12]. Those small systems must be powerful enough to compute,
when assembled in more complex systems, any computable (boolean) function.

Hence, in this section we describe the implementations of the NAND and XOR logic
circuits, and of the decrement and increment instructions of register machines, through
sets ofτ -DPP chemical reactions. We then present some simulation results of our sys-
tems.

We recall thatregister machinesare universal abstract computing devices, where a finite
set of uniquely labelled instructions is given, and which atany time keep updated a finite
set of registers (holding integer numbers) by performing a sequence of instructions,
chosen according to their labels. Every instruction can be of one of the following types,
here informally introduced:

• ADD: a specified register is increased by 1, and the label of next instruction is chosen
nondeterministically between two labels specified in the instruction,

• SUB: a specified register is checked, and if it is non-empty it is decreased by 1,
otherwise it will not be changed; the next label will be differently chosen in the
two cases,

• HALT: the machine stops.

Later, we will describeτ -DPP implementations ofSUB andADD instructions.

4.3 The NAND and XOR logic circuits The NAND logic circuit has been imple-
mented with the sequential composition of an AND and a NOT gate as shown in Figure
4.1. Following the chemical computing guidelines described in Section 3, we defined
the logic circuits with the rules listed in Table 4.1. The constant values reported in the
table have been used to perform the simulation by means ofτ -DPP. Note that the rules
r11, . . . , r14 represent the inputs of the gate. For instance, when the constants of the

Toward a wet implementation for τ -DPP 395

rulesr11 andr13 are set to1, the input given to the NAND gate is0 for both the input
lines. The rationale behind this, is that the different inputs for the system are obtained
producing the corresponding molecular species.

Fig. 4.1 The NAND logic gate

Table 4.1 Reaction rules for the NAND unit. The initial multiset is setto 0 for all the molecular
species.

Reaction Rule Constant

r1 a + b→ c 1 · 10−3

r2 a + B → c 1 · 10−3

r3 A + b→ c 1 · 10−3

r4 A + B → C 1 · 10−3

r5 c→ D 1 · 10−2

r6 C → d 1 · 10−2

r7 a + A→ λ 1 · 10−1

r8 b + B → λ 1 · 10−1

r9 c + C → λ 1 · 10−1

r10 d + D → λ 1 · 10−1

r11 λ→ a c11 ∈ {1, 0}
r12 λ→ A c12 ∈ {1, 0}
r13 λ→ b c13 ∈ {1, 0}
r14 λ→ B c14 ∈ {1, 0}

Rulesr1, . . . , r4 compute AND, rulesr5, . . . , r6 compute NOT, rulesr7, . . . , r10 will
clean the system when going to change its input and, in general, when both values for a
variable are present in the system.

Exploiting the set of rules for the NAND gate, it is then possible to define theτ -DPP
which encodes the logic circuit. Formally, theτ -DPPΥNAND is defined as

ΥNAND = (V0, µ,S, M0, R0, C0),

where:

• V0 is the unique volume of the NAND unit;
• µ is the plain membrane structure[0]0;

396 Toward a wet implementation for τ -DPP

• S = {a, A, b, B, c, C} is the set of molecular species;

• M0 = {ama , AmA , bmb , BmB , cmc , CmC , dmd , DmD}, is the set of multisets oc-
curring inside the membraneV0;

• R0 = {r1, . . . , r14} is the set of rules defined in volumesV0 and reported for
clarity in Table 4.1. Due to the flat membrane structure, all the rules here involved
are internal.

• C0 = {c1, . . . , c14} is the sets of stochastic constants associated to the rules de-
fined inV0, reported for clarity in Table 4.1.

In Figure 4.2, the results of the simulation of the NAND gate are reported. In the ini-
tial configuration of the system, the multisets are empty, that is, the amounts of all the
molecular species are set to zero. At timet = 0, the input of the system isa, B, corre-
sponding to the first input line set to zero and the second lineset to one. This corresponds
to aτ -DPP configuration where the constants of rulesr11 andr14 are set to 1, while the
constants of rulesr12 andr13 are set to zero. The output obtained with this configura-
tion is1, indeed the system, at the beginning of the simulation, produces the molecules
D corresponding to the expected output value. At timet = 400 the input values of the
system change froma, B to A, B. The system starts producingd molecules, but the
output of the system changes only when all theD molecules have been degraded (by
means of ruler10) and the moleculesd are then accumulated inside the membrane.

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000 1200

M
ol

ec
ul

es

Time [a.u.]

a
A
b
B
c
C
d
D

Fig. 4.2 Plot of the dynamics of the NAND unit with two inputs in succession. The initial multiset
is set to 0 for all the molecular species.

The XOR gate (see Figure 4.3) has been implemented using the set of rules listed in
Table 4.2. The constant values reported in the table have been used to perform the sim-
ulation by means ofτ -DPP. The rulesr8, . . . , r11 represent the inputs of the gate. For
instance, when the constants of the rulesr8 andr10 are set to1, the input given to the

Toward a wet implementation for τ -DPP 397

Fig. 4.3 The XOR logic gate

XOR gate is0 for both the input lines. The rational behind this, is that the different
inputs for the system are obtained producing the corresponding molecular species.

Table 4.2 Reaction rules for the XOR unit. The initial multiset is set to 0 for all the molecular
species.

Reaction Rule Constant

r1 a + b→ c 1 10−3

r2 a + B → C 1 10−3

r3 A + b→ C 1 10−3

r4 A + B → c 1 10−3

r5 a + A→ λ 1 10−1

r6 b + B → λ 1 10−1

r7 c + C → λ 1 10−1

r8 λ→ a c8 ∈ {1, 0}
r9 λ→ A c9 ∈ {1, 0}
r10 λ→ b c10 ∈ {1, 0}
r11 λ→ B c11 ∈ {1, 0}

Formally, theτ -DPPΥXOR, corresponding to the XOR logic circuit, is defined as

ΥXOR = (V0, µ,S, M0, R0, C0),

where:

• V0 is the unique volume of the XOR unit;
• µ is the plain membrane structure[0]0;
• S = {a, A, b, B, c, C, d, D} is the set of molecular species;
• M0 = {ama , AmA , bmb , BmB , cmc , CmC}, is the set of multisets occurring inside

the membraneV0;
• R0 = {r1, . . . , r11} is the set of rules defined in volumesV0 and reported for

clarity in Table 4.2. Due to the flat membrane structure, all the rules here involved
are internal.

• C0 = {c1, . . . , c11} is the sets of stochastic constants associated to the rules de-
fined inV0 reported for clarity in Table 4.2.

398 Toward a wet implementation for τ -DPP

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 100 200 300 400 500 600

M
ol

ec
ul

es

Time [a.u.]

a
A
b
B
c
C

Fig. 4.4 Plot of the dynamics of the XOR unit with two input in succession. The initial multiset
is set to 0 for all the molecular species.

In Figure 4.4, the results of the simulation of the XOR gate are reported. In the ini-
tial configuration of the system, the multisets are empty, that is, the amounts of all the
molecular species are set to zero. At timet = 0, the input of the system isa, B, corre-
sponding to the first input line set to zero and the second one set to one. This corresponds
to aτ -DPP configuration where the constants of rulesr8 andr11 are set to 1, while the
constants of rulesr9 andr10 are set to zero. The output obtained with this configuration
is 1, indeed the system, at the beginning of the simulation, produces the moleculesC
corresponding to the expected output value. At timet = 200 the input values of the
system change froma, B to A, B. The system starts producingc molecules, but the
output of the system changes only when all theC molecules have been degraded (by
means of ruler7) and the moleculesc are then accumulated inside the membrane.

4.4 The SUB instruction We now describe and simulate a 2-membranesτ -DPP
system reproducing, by means of chemical reactions operating on a set of molecular
species, the behaviour of aSUB instruction of a register machine. This type of instruction
is shown first because it hides a conditional behaviour, checking whether a register is
zero or not, and respectively choosing a different label forthe next instruction, and the
availability of conditional instructions is a key issue in computing devices.

We consider aSUB instruction checking a register whose value is associated to the pres-
ence of objectsu in volumeV1, and the resulting choice for the next label will be rep-
resented by the appearing in volumeV0 either of objectsp or z. Finally, the triggering
of this instruction will be given by the injection inV0 of a quantity of objectss.

Formally, aτ -DPPΥSUB is defined as

ΥSUB = (V0, V1, µ,S, M0, M1, R0, R1, C0, C1),

Toward a wet implementation for τ -DPP 399

where:

• V0, V1 are the volumes of the SUB unit;
• µ is the nested membrane structure[0 [1]1]0;
• S = {p, s, s′, u, z, z′} is the set of molecular species;
• M0 = {pmp , sms , s′

ms′ , zmz}, M1 = {pmp , sms , umu , zmz , z′
mz′}, are the mul-

tisets occurring inside the membranesV0 andV1 respectively;
• R0 = {r1, . . . , r5}, R1 = {r1, . . . , r3} are the sets of rules defined in volumes

V0, V1 respectively, and reported for clarity in Table 4.3;
• C0 = {c1, . . . , c5}, C1 = {c1, . . . , c3} is the sets of stochastic constants associ-

ated to the rules defined inV0, V1 reported for clarity in Table 4.3.

Table 4.3 Reaction rules for the SUB unit (R0 on the left andR1 on the right). The initial
multisets are{s′40} in V0, and{u20, z5} in V1.

Reaction Rule Constant

r1 2p→ (p, here) 1

r2 z + p→ (z, here) 1

r3 2z → (z, here) 1

r4 s→ (s, in0) 1

r5 s′ → (s, here) 6 10−2

Reaction Rule Constant

r1 s + u→ (p, out) 1 103

r2 s + z → (z + z′, here) 1

r3 z′ → (z, out) 1

This system is initialised with small quantities for molecular species, and this makes it
fragile with respect to the inherent stochasticity, but ourgoal is to qualitatively show the
required sharp change of behaviour occurring when the simulated register goes to zero.

The simulation starts with a positive register value withinV1, and it receives a sequence
of SUB requests (rulesr5 andr4), bounded in this example by the initial availability of
s′ molecules. Figure 4.5 shows the correct two phases of execution: in the first phase
the counter is decremented and objectsp are produced inV0, but when the simulated
counter reaches zero, only objectsz will be produced.

4.5 The SUBADD module The SUB unit can be extended to be able to perform
both aSUB and anADD instruction, according to which objects it receives from outside:
s or a, respectively. Rules are defined for the two possible operations, and the choice of
objects avoid mixing them. The results can be seen in figures 4.6 and 4.7.

Formally, aτ -DPPΥSUBADD is defined as

ΥSUBADD = (V0, V1, V2, µ,S, M0, M1, M2, R0, R1, R2, C0, C1, C2),

where:

• V0, V1, V2 are the volumes of the SUBADD module;

400 Toward a wet implementation for τ -DPP

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80

M
ol

ec
ul

es
 V

0

Time [a.u.]

p
z

Fig. 4.5 Plot of the dynamics of the SUB unit.

• µ is the nested membrane structure[0 [1 [2]2]1]0;
• S = {l, l′, m, k, k′, o, q, s, p, z, a, A, u, z′, a′} is the set of molecular species;
• M0 = {lml , l′ml′ , sms , zmz , pmp , kmk , k′mk′ , AmA , omo , mmm}, M1 = {sms ,

pmp , zmz , ama , AmA} andM2 = {sms , umu , pmp , zmz , z′mz′ , a′ma′ }, are the mul-
tisets occurring inside the membranesV0, V1 andV2 respectively;

• R0 = {r1, . . . , r8}, R1 = {r1, . . . , r8}, R2 = {r1, . . . , r5} are the sets of rules
defined in volumesV0, V1 andV2 respectively, and reported for clarity in Table 4.4;

• C0 = {c1, . . . , c8}, C1 = {c1, . . . , c8}, C2 = {c1, . . . , c5} is the sets of stochas-
tic constants associated to the rules defined inV0, V1 andV2 reported for clarity in
Table 4.4.

5 Complete systems, discussion and open problems

Our results are a starting point, since they only tackle the building of basic elements of a
computing device. A more complex problem is related to the connectivity among these
components.

The general instance of boolean network, but also the general reaction network consid-
ered in literature, do require a complex grid of channels communicating variables/objects
to the required destination gates/volumes.

For usual P systems, such a grid of channels can only reproduce a tree-like structure
of nested membranes, communicating only between adjacent ones. We could move our
studies to other models for P systems, which allow more free adjacency relations be-
tween membranes, such as “Tissue P Systems” [11]. But we can make two positive
remarks: experimental chemical tools like micro reactors can be built reproducing any

Toward a wet implementation for τ -DPP 401

Table 4.4 Reaction rules for the SUBADD module (R0 on the left,R1 on the right andR2 on
the bottom). The initial multisetsM0 andM1 are empty, whileM2 is {u30}.

Reaction Rule Constant

r1 l→ (l′ + s, here) 1

r2 s→ (s, in1) 1

r3 l′ + z → (m, here) 1

r4 l′ + p→ (m, here) 1

r5 k → (k′ + a, in1) 1

r6 a→ (a, in1) 1

r7 k′ + A→ (o, here) 1

r8 k′ + A→ (q, here) 1

Reaction Rule Constant

r1 s→ (s, in2) 1

r2 2p→ (p, here) 1

r3 2z → (z, here) 1

r4 p + z → (p, here) 1

r5 z → (z, out) 1

r6 p→ (p, out) 1

r7 a→ (a, in2) 1

r8 A→ (A, out) 1

Reaction Rule Constant

r1 s + u→ (p, out) 1 103

r2 s + z → (z + z′, here) 1

r3 z′ → (z, out) 1

r4 a + u→ (2u + a′, here) 1

r5 a′ → (A, out) 1

given grid of channels, while on the other hand the tree-likestructure of P-systems does
not rule out their universality [15].

Within our approach, by using SUBADD modules, we can outlinethe structure of a
τ -DPP system simulating a complete register machine with just three levels of nested
membranes: the skin membrane, and inside it a number of “register” membranes struc-
tured like volumeV1 in SUBADD module. The key idea to be developed, is to simulate
the steps of the register machine by having in the skin membrane molecules represent-
ing the current instruction label. Then, for instance, if instructionl increments register
r, then rules would be defined which produce objectsar and send them to internal mem-
brane representing registerr. Continuing the example, that internal membrane will pro-
duce objectsAr, and a rule in skin membrane would transform pairs of objectsl + Ar

into (non-deterministically chosen) objectsm, wherem is one of the outcome labels
specified by theADD instruction being simulated. (Other details to be specifiedwill be
those related to the halting of the computation.)

All this leads to some open problems worth being studied. Thepassage from single sim-
ple components to complete universal devices, with the required connectivity, how does
it scale? It is well known that small universal register machines can be built [10], but
their τ -DPP implementation, and eventually their chemical systemimplementation has
to be evaluated. Moreover, the computational efficiency of these systems can be stud-

402 Toward a wet implementation for τ -DPP

 0

 0.2

 0.4

 0.6

 0.8

 1

M
ol

ec
ul

es
 in

 V
0

l
m

 28

 28.5

 29

 29.5

 30

 30.5

 31

 0 2 4 6 8 10

M
ol

ec
ul

es
 in

 V
2

Time [a.u.]

u

Fig. 4.6 Plot of the dynamics of the SUBADD module performing a decrement instruction on a
register.

 0

 0.2

 0.4

 0.6

 0.8

 1

M
ol

ec
ul

es
 in

 V
0

k
o

 29

 29.5

 30

 30.5

 31

 31.5

 32

 0 2 4 6 8 10

M
ol

ec
ul

es
 in

 V
2

Time [a.u.]

u

Fig. 4.7 Plot of the dynamics of the SUBADD module performing a increment instruction on a
register.

ied, for instance with respect to NP-complete problems suchas SAT. Anyway, the usual
trade-off between space and time in structural complexity,perhaps has to be applied
with negative results toτ -DPP, since objects could exponentially grow in polynomial
time (by using rules likep→ 2p, but the space structure of volumes is fixed, and on the
other hand the stochastic nature of the model substitute non-determinism by equiprob-
ability, all motivated by chemical plausibility.

Toward a wet implementation for τ -DPP 403

Bibliography

[1] D. Besozzi, P. Cazzaniga, D. Pescini, G. Mauri. Modelling metapopula-
tions with stochastic membrane systems.Biosystems, 91:499–514, 2008.
doi:10.1016/j.biosystems.2006.12.011 .

[2] D. Besozzi, P. Cazzaniga, D. Pescini, G. Mauri, Seasonalvariance in P system
models for metapopulations.Progress in Natural Science, 17:392–400, 2007.

[3] G. Berry, G. Boudol, The chemical abstract machine.Theoretical Computer Sci-
ence, 96:217–248, 1992.

[4] Y. Cao, D. T. Gillespie, and L.R. Petzold. Efficient step size selection for the
tau-leaping simulation method.Journal Chemical Physics, 124:044109, 2006.

[5] P. Cazzaniga, D. Pescini, D. Besozzi, G. Mauri. Tau leaping stochastic simulation
method in P Systems. 7th International Workshop, WMC 2006 (H.J. Hoogeboom,
G. Păun, G. Rozenberg, A. Salomaa, eds.)Lecture Notes in Computer Science,
Springer, 4361:298–313, 2006. doi:10.1007/1196351619.

[6] P. Dittrich. Chemical computing. Unconventional Programming Paradigms (UPP
2004)Lecture Notes in Computer Science, 3566:19–32, 2005.

[7] D. T. Gillespie. Exact stochastic simulation of coupledchemical reactions.Journal
Physical Chemistry, 81:2340–2361, 1977.

[8] D. T. Gillespie and L.R. Petzold. Approximate accelerated stochastic simulation
of chemically reacting systems.Journal Chemical Physics, 115:1716–1733, 2001.

[9] S. J. Haswell, R. J. Middleton, B. O’Sullivan, V. Skelton, P. Watts and P. Styring.
The application of micro reactors to synthetic chemistry.Chemical Communica-
tion, 391–398, 2001. doi:10.1039/b008496o.

[10] I. Korec. Small universal register machines,Theoretical Computer Science,
168:267–301, 1996

[11] C. Martı́n-Vide, G. Păun, J. Pazos, A. Rodrı́guez-Patón. Tissue P systems,Theo-
retical Computer Science, 2:295–326, 2003

[12] N. Matsumaru, F. Centler, P Speroni di Fenizio, P. Dittrich. Chemical organization
theory as a theoretical base for chemical computing.International Journal of
Unconventional Computing, 3:285–309, 2005

[13] M. L. Minsky. Computation: finite and infinite machines.Prentice-Hall, Engle-
wood Cliffs, 1967.

[14] G. Păun. Computing with membranes.Journal of Computer and System Sciences,
61:108–143, 2000.

[15] G. Păun.Membrane computing. an introduction. Springer–Verlag, 2002. Berlin.
[16] D. Pescini, D. Besozzi, G. Mauri, and C. Zandron. Dynamical probabilistic P

systems.International Journal of Foundations of Computer Science, 17:183–204,
2006.

[17] D. Pescini, D. Besozzi, and G. Mauri. Investigating local evolutions in dynami-
cal probabilistic P systems.Proceedings of Seventh International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’05). IEEE
Computer Press, 440–447, 2005.

[18] D. Pescini, D. Besozzi, G. Mauri, and C. Zandron. Analysis and simulation

404 Toward a wet implementation for τ -DPP

of dynamics in probabilistic P systems. In A. Carbone, N. Pierce, Eds.,DNA
Computing, 11th International Workshop on DNA Computing, DNA11, London,
ON, Canada, June 6-9, 2005. Lecture Notes in Computer Science 3892, 236–247,
Springer–Verlag, 2006.

Defining and Executing P-systems with
Structured Data in K

———————————————
Traian Serbănută, Gheorghe Stefănescu, Grigore Rosu

University of Illinois at Urbana-Champaign, Department ofComputer Science,
201 N. Goodwin, Urbana, IL 61801, USA
{tserban2,stefanes,grosu }@cs.uiuc.edu

K is a rewrite-based framework proposed for giving formal executable seman-
tics to programming languages and/or calculi. K departs from other rewrite-
based frameworks in two respects: (1) it assumes multisets and lists as builtin,
the former modeling parallel features, while the latter sequential ones; and (2)
the parallel application of rewriting rules is extended from non-overlapping
rules to rules which may overlap, but on parts which are not changed by these
rules (may overlap on “read only” parts). This paper shows how P-systems and
variants can be defined as K (rewrite) systems. This is the first representation of
P-systems into a rewrite-based framework that captures thebehavior (reaction
steps) of the original P-system step-for-step. In additionto providing a formal
executable semantic framework for P-systems, the embedding of P-systems as
K systems also serves as a basis for experimenting with and developing new
extensions of P-systems, for example with structured data.A Maude-based ap-
plication for executing P-systems defined in K has been implemented and exper-
imented with; initial results show computational advantages of using structured
objects in P-systems.

1 Introduction

K [23] (see also [14]) is a rewrite-based framework which hasbeen proposed and devel-
oped (starting with 2003) as an alternative (to structural operational semantics) formal
executable semantic framework for defining programming languages, language-related
features such as type systems, and/or calculi. K’s strengthcan be best reflected when
defining concurrent languages or calculi, because it gives those a truly concurrent se-
mantics, that is, one in which concurrent steps take place concurrently also in the seman-
tics (instead of interleaving them, as conventional operational semantics do). K assumes
as builtin and is optimized for multisets and lists, the former modeling parallel features,
while the latter sequential ones. More importantly, rewriting rules in K can be applied
concurrently even when they overlap, assuming that they do not change the overlapped
portion of the term (may overlap on “read only” parts). Core parts of many program-
ming languages or computation models are already defined in K, including Scheme [16],

406 Defining and Executing P-systems with Structured Data in K

KOOL [13], Milner’s EXP language [17], Turing machines, CCS[18], as well as type
systems for these, etc. - see [23].

A fast developing class of computation models was introduced by Paun in 1998 [20]
exploiting ideas from chemistry and biology (see [22] for a recent survey). They are
calledmembrane systems(or P-systems) and combine nested membrane structures with
computation mechanisms inspired by the activity of living cells. There is a large variety
of P-systems studied in the literature and a few toy implementations for developing
applications. The original motivation was to link this research to formal language theory
studies, but the model is more general, coming with important suggestions in many
fields, for instance in the design of new parallel programming languages.

Both K definitions and P-systems use potentially nested membranes as a spatial modu-
larization mechanism to encapsulate behaviors and to structure the systems (see Fig. 3.1(a)
for an example of nested membranes). P-systems are inspiredby chemistry and biol-
ogy, using “objects” (abstract representations of chemical molecules) which interact;
all communication is at the object level. Objects move from region to region (in the
basic model, these are neighboring regions) either directly, or by using symport/antiport
mechanisms. When far reaching regions are targeted, special tags are to be added to
objects to reach the destination and, in most of the models, the objects have to travel
through membranes from region to region to reach the final destination.

The K-framework uses a similar membrane structure (called “cell”), but for a different
goal, leading to important differences. The main objectiveof K is to model high-level
programming languages and calculi, for instance allowing OO- or multi-threading pro-
gramming. To this end, the objects within the membranes are structured. This structure
is both in space and in time. The spatial aspect refers to the use of algebraic terms
to describe the objects floating in the membrane soups (regions). Due to this alge-
braic structure, one has more power to express object interaction. However, there is
another equally important mechanism, which is not explicitly present in P-systems or
in CHAMs [6, 7], namely the use of computation tasks, as control structures evolving
in time. To this end, a new data type is builtin in the K framework, the list structure,14

used to capture sequential orders on tasks’ execution. The “communication” in K is at
a high level, data being “moved” from a place to another placein a single step. It is this
combination of structured data and their use in a mixture of nested soups (for parallel
processes) and lists (for sequential tasks) which makes it possible to effectively define
various high-level languages in K.

P-systems may be described without membranes. Indeed, using the tree associated to
the membrane structure, one can tag each object with the pathin the tree from the root
to the membrane where the object is in. Now, the objects may beused in a unique
huge soup and the evolution rules, previously used in specific regions, become global

14Lists can be encoded with (multi)sets, but allowing them as “first-class citizens” gives the K user the
capability to match fragments of lists.

Defining and Executing P-systems with Structured Data in K 407

rules, but applied to similar path-tagged objects. This observation highlights the advan-
tages of using membrane systems: the matching and the interaction between objects are
localized and may be more efficiently implemented. The priceto be paid is that commu-
nication between arbitrary membranes is not straightforward and has to be implemented
with small steps of passing objects from region to region to reach the final destination.
In K one has a somehow mixed setting: K uses membranes to enforce local rewriting,
but the matching rules are global.

Three main classes of P-systems have been extensively studied:

P-systems as transition systems [“classical” P-systems]
P-systems as communicating systems [symport/antiport P-systems]
P-systems as structure-evolving systems [P-systems with active membranes]

We present formalizations in K of these three basic types of P-systems and of many
key elements used in the plethora of P-systems found in the literature. We believe that
this is enough evidence that K can serve as a suitable semantic framework for defining
P-systems in particular, and, in general, for experimenting with new parallel program-
ming languages based on paradigms from natural science, like P-systems, for which
efficient implementations are notoriously difficult to develop. We make two additional
contributions:

We extend P-systems from a setting with unstructured objects (or using a simple
monoid structure on objects, i.e., strings) to one where objects are given by ar-
bitrary equational specifications. Most data types may be represented by algebraic
specification techniques, hence one can use this line to incorporate complex data
types into P-systems.

We have developed a running environment for P-systems usingthe embedding tech-
niques discussed in this paper and the implementation of K inMaude. The paper
includes a few experiments with both unstructured and structured objects which
demonstrate the large increase in expressivity and performance due to adding struc-
ture to objects.

The paper is organized as follows. Sections 2 and 3 briefly introduce K and P-systems,
respectively, referring the reader to the literature for more detail. Sections 4, 5 and 6
show how the three types of P-systems above are defined in K. Section 7 discusses our
implementation and Section 8 concludes the paper.

2 K

K [23] is a framework for defining programming languages based on rewriting logic
RWL [15], in the sense that it has two types of sentences:equationsfor structural iden-
tities andrulesfor computational steps. It has an implementation in Maude and it allows

408 Defining and Executing P-systems with Structured Data in K

Int ::= . . . all integer numbers

Bool ::= true | false

Name::= all identifiers; to be used as names of variables

Val ::= Int

AExp::= Val|Name

| AExp+ AExp [strict, extends+Int×Int→Int] (r1)

BExp::= Bool

| AExp≤ AExp [seqstrict, extends≤Int×Int→Bool] (r2)

| not BExp [strict, extends¬Bool→Bool] (r3)

| BExpand BExp [strict(1)] (r4)

Stmt::= Stmt; Stmt [s1; s2 = s1 y s2] (r5)

| Name:= AExp [strict(2)] (r6)

| if BExp then Stmtelse Stmt [strict(1)] (r7)

| while BExpdo Stmt (r8)

| halt AExp [strict] (r9)

Pgm::= Stmt; AExp

Table 2.1 K-annotated syntax of IMP.

for a fast development of efficient interpretors. We briefly describe the basic concepts
and notations used in K (see [23] and the referenced website for a detailed presentation
of K; ask the author for the current version of a draft book) using as an example a sim-
ple concurrent language. We start with the simple imperative language IMP defined in
Tables 2.1 and 2.2. Then, we extend IMP with threads and call the resulting language
CIMP.

Annotating syntax. The plus operation(r1) is said to be “strict” in both arguments/sub-
expressions (i.e., they may be evaluated in any order), while the conditional(r7) is strict
only in its first argument (i.e., the boolean expression has to be evaluated first); finally,
in “less-than”(r2) the evaluation is “seqstrict” (i.e., the arguments are evaluated in the
sequential order). Some operations “extend” other operations on primitive data types
(which may be computed with external libraries, for example). All attributes can be
desugared with equations or rules (if they are not already equations or rules); they are
nothing but notational convenience. For example, the extends attribute in(r1) desugars
to rule “i1 + i2 → i1 +Int×Int→Int i2”. The desugaring of strictness is explained shortly.

Semantics. The K semantics is defined with equations and rules that applyon a nested
cell (or membrane) structure, each cell containing either multisets or listsof elements.
A K semantics of IMP is described in Table 2.2. Kconfigurationsare specified using
cellsL S Mh, whereh is a cell index andS is any term, in particular a multiset or a list
of possibly other cells.Set[S] andList[S] denote multisets and lists of terms of type

Defining and Executing P-systems with Structured Data in K 409

S; by default, the empty set or list is denoted by a dot “·”, and multiset elements are
separated by space while list elements are separated by comma. If one wants a different
separator or unit, or wants to emphasize a default one, then one can specify it as sub-
and/or super-script; for example,List·

y
[S] denotes “y”-separated lists of elements of

typeS of unit “·”. The syntactic categoryK stays forcomputationsand typically has
a “y”-separated list structure ofcomputational tasks, with the intuition that these are
processed sequentially. What “processed” means depends upon the particular definition.
Strictness attributes are syntactic sugar for special equations allowing subcomputations
to be “scheduled for processing”. The strictness attributes in Table 2.1 correspond to
(k, k1, k2 ∈ K, r1 ∈ KResult, x ∈ Name):

k1 + k2 = k1 y � + k2

k1 + k2 = k2 y k1 + �

k1 ≤ k2 = k1 y � ≤ k2

r1 ≤ k2 = k2 y r1 + �

not k = k y not �

k1 and k2 = k1 y � and k2

x := k = k y x := �

if k then k1 else k2 = k y if � then k1 else k2

halt k = k y halt �

The square “�” is part of auxiliary operator names calledcomputation freezers; for
example, “� + ” freezes the computationk2 in the first equation above.

In K, the following derived notations are used to indicate anoccurrence of an element
in a cell: L S |〉h - at the top;〈| S Mh - at the very end;〈| S |〉h - anywhere. The first
two notations are useful when the configuration is a list, butthey are not used in the
representation of P-systems in K described in this paper. Rules can also be written in
contextual formin K, where subterms to be replaced are underlined and the terms they
are replaced by are written underneath the line. For example, the assignment rule

Lx := v

·
|〉k 〈|(x,

v

)|〉state

reads as follows (underscore “” matches anything): if an assignment “x := v” is at the
top of the computation, then replace the current value ofx in the state byv and dissolve

KResult::= Val

K ::= KResult|List·y[K]
Config::= LKMk | LSet[(Name, Val)]Mstate

| LSet[Config]M⊤

Lx

v

|〉k 〈|(x, v)|〉state

true and b→ b, false and b→ false

Lx := v

·
|〉k 〈|(x,

v

)|〉state

if true then s1 else s2 → s1

if false then s1 else s2 → s2

L while b do s

if b then (s; while b do s) else ·
|〉k

Lhalt i|〉k → LiMk

Table 2.2 K configuration and semantics of IMP.

410 Defining and Executing P-systems with Structured Data in K

the assignment statement. We prefer to use the more conventional notation “l → r”
instead of “lr ” when the entire term changes in a rule.

Extending IMP with threads. We extend IMP with threads and call the resulting
language CIMP (from concurrent IMP). We only add a spawning statement to the syntax
of the language, without any explicit mechanisms for synchronization.

Stmt::= ... | spawn Stmt

Interestingly, all we have to do is to add a K rule for thread creation and nothing from
the existing definition of the K semantics of IMP has to be changed. Here is the rule for
spawning:

L spawn(s)

·

|〉
k

·

L s Mk

Therefore, multipleL Mk cells can live at the same time in the top cell, one per thread.
Thanks to the concurrent rewriting semantics of K, different threads can access (read or
write) different variables in the state at the same time. Moreover, two or more threads
can concurrently read the same variable. This is precisely the intended semantics of mul-
tithreading, which is, unfortunately, not captured by SOS definitions of CIMP, which en-
force an interleaving semantics based on nondeterministiclinearizations of the concur-
rent actions. While K allows a concurrent semantics to a language, note that it doesnot
enforce any particular “amount of concurrency”; in particular, K’s concurrent rewriting
relation, denoted “⇛”, includes any number of rewrites that can be executed concur-
rently, from one rewrite to a maximal set of rewrites; thus, an interleaved execution or a
maximally parallel one are both valid rewrite sequences in K.

Once a thread is terminated, its empty cell (recall that statements are processed into
empty computations) will never be involved into any matching, so it plays no role in
the future of the program, except, perhaps, that it can overflow the memory in actual
implementations of the K definition. It is therefore naturalto cleanup the useless cells
with an equation of the form:

L · Mk = ·

Synchronizationmechanisms through lock acquire and release, as well as through rendez-
vous barriers, are discussed in detail in [23].

3 Membrane systems

Membrane systems (or P-systems) are computing devices abstracted from the structure
and the functioning of the living cell [1].

In classicaltransition P-systems[20], the main ingredients of such a system are the

Defining and Executing P-systems with Structured Data in K 411

membrane structure(a hierarchical cell-like arrangement of membranes15), in the com-
partments of whichmultisetsof symbol-objects evolve according to givenevolution
rules. The rules are localized, associated with the membranes (hence, with the compart-
ments), and they are used in anondeterministic maximally parallelmanner (a unique
clock is assumed, the same for all compartments). A computation consists of a sequence
of transitions between system configurations leading to a halting configuration, where
no rule can be applied. With a halting computation one associates a result, usually in the
form of the number of objects present in a distinguished membrane. Thus, such a system
works with numbers inside (multiplicities of objects in compartments) and provides a
number as the result of a computation.

1 2

3

4
5

6

7

8 9

environment

skin

regions

elementary membrane

membranes

environment

afc

a→ ab
a→ bδ
f → ff

b→ d d→ de
ff → f cf →

cdδ

e→ (e, out) f → f

1
2

3

(a) (b)

Fig. 3.1 A membrane system (a) and a “classical” P system (b).

From a different perspective, P-systems may be seen as communicating systems. In
this view, a P-system, better known assymport/antiport P-system[19], computes by
moving objects through membranes, in a way inspired by biology. The rules are of
the forms(x, in) and(x, out) (symportrules, with the meaning that the objects speci-
fied byx enter, respectively exit, the membrane with which the rule is associated), and
(x, out; y, in) (antiportrules: the objects specified byx exit and those specified byy
enter the membrane at the same time). By rules of these types associated with the skin
membrane of the system, objects from the environment can enter the system and, con-
versely, objects from the system can be sent out into the environment. One can also
usepromoters(inhibitors) associated with the symport/antiport rules, in the form ofob-
jects which must be present in (resp. absent from) a compartment in order to allow the
associated rule to be used.

Finally, a feature which may be added to any of the previous types of P-systems is the
possibility to dynamically change the membrane structure.The resulting P-systems are
calledP-systems with active membranes[21].

15See [8], for a similar structure.

412 Defining and Executing P-systems with Structured Data in K

4 P-systems as transition systems (classical P-systems)

This is the classical type of P-systems, originally introduced in [20]. In this model, each
membrane has an associated set of rules. The objects can travel through membranes
and they may be transformed by the rules (the rules can createor destroy objects). A
membrane may be dissolved and its objects flood into the parent region, while the rules
vanish.

4.1 Basic transition P-systems A transition P-system, of degreem ≥ 1, is formally
defined by a tuple

Π = (O, C, µ, w1, . . . , wm, R1, . . . , Rm, io),

where: (1)O is an alphabet ofobjects; (2) C ⊆ O is the set of catalysts; (3)µ is a mem-
brane structure (with the membranes bijectively labeled bynatural numbers1, . . . , m);
(4) w1, . . . , wm are multisets overO associated with the regions1, . . . , m of µ, repre-
sented by strings fromO∗ unique up to permutations; (5)R1, . . . , Rm are finite sets of
rules associated with the membranes1, . . . , m; the rules are of the form

u→ v or u→ vδ
with u ∈ O+ andv ∈ (O × Tar)∗, whereTar = {here, in, out}

(6) io is the label of the output membrane, an elementary one inµ or io = 0, indi-
cating that the collecting region is the environment. Whenδ is present in the rule, its
application leads to the dissolution of the membrane and to the abolishment of the rules
associated with the membrane just dissolved.

A membrane is denoted by[h]h. By convention,[hu]h denotes a membrane withu
present in the solution (among other objects). Starting from the initial configuration,
which consists ofµ andw1, . . . , wm, the system passes from one configuration to an-
other by applying a transition, i.e., the rules from each setRi in anon-deterministic and
maximally parallelway. A sequence of transitions is called acomputation; a computa-
tion is successfulif and only if it halts. With a successful computation one associates
a result, in the form of the number of objects present in membraneio in the halting
configuration.

An example is presented in Fig. 3.1(b) – it computes/generates the square numbers
(k + 1)2, k ≥ 0. When a rule withδ is applied, the corresponding membrane and its
rules are dissolved and its current objects are flooded into the parent region. A typical,
terminating evolution of this system is as follows: It starts in membrane 3 (the other
membranes have no objects), then membrane 3 is dissolved andthe evolution continues
in membrane 2, and when this is dissolved, the final stage of the execution is in mem-
brane 1 (the skin membrane). In membrane 3, the first two ruleshave a conflict ona:
when the 2nd rule is applied, objecta, as well as membrane 3, disappear; the rule forf

Defining and Executing P-systems with Structured Data in K 413

is independent and has to be used each time another rule is applied; to conclude, when
membrane 3 disappears, we are left withbk+1 andf2k+1

objects which are flooded into
membrane 2. In membrane 2, at each cycle thef ’s are divided by 2 and, in parallel,
a copy of eachb (now rewritten ind) is created. Finally one gets(k + 1)2 copies of
objecte when membrane 2 is dissolved, which are passed to membrane 1 and then into
the external environment.

4.2 Basic transition P-systems in K Given a P-systemΠ, we define a K-system
K(Π), as follows:

• A membrane[hS]h, whereS is its contents, is represented as16

L S Mh

The top configuration isL L Mskin L Menv M⊤, including a representation of the
objects in the environment.

• The rules inΠ are represented as global rules inK(Π), their localization being a
side-effect of membranes name matching. The evolution rules are reduced to two
basic rules used in a membrane[h]h and are represented in K as follows:

∗ u→ v, with u ∈ O+, v ∈ (O × Tar)∗, whereTar = {here, in, out}
For av ∈ (O × Tar)∗, let v be its restriction toO. Next (recall that composi-
tion is commutative), letv be written asvhvivo, wherevh contains the objects
that remain in the membrane[h]h, vi those that enter into internal membranes,
andvo those that leave out the membrane. Then, the associated rulein K is the
following: for anyk ≥ 1 andvi = v1 . . . vk (with nonemptyvj ’s) we have a
rule

〈| u

vh

〈| ·
v1

|〉 . . . 〈| ·
vk

|〉 |〉h ·
vo

∗ u→ uδ (δ indicates that the membrane is dissolved)

L u z Mh → u z

For the first ruleu→ v, a second possibility is to perform two steps: movevh, vo first,
then for all remaining tagged objects(vr, in) use a matching rule〈| (vr, in) 〈| ·

vr

|〉 |〉 .

The rules for object movement and membrane dissolution may be combined. For in-
stance, the ruleu→ vδ, with v = vhvivo, as above but fork = 1,17 may be represented
as

16Another representation may beL L h Mid S Mcell, if one prefers a single cell type. This can also be an
implementation optimization, to avoid structured cell labels.

17For simplicity, we describe the casek = 1 where all objects which enter an internal membrane enter into
the same membranei.

414 Defining and Executing P-systems with Structured Data in K

L u LwMi z Mh → vh Lw viMi z vo

In this interpretation, first the objects are moved out from the membrane, then the mem-
brane is dissolved. One can go the other way round, first to dissolve the membrane and
then to move the objects out; the K rule is

〈| L u L w Mi z Mh

vh L wvi Mi z

|〉 ·
vo

Parallel rewriting in K. The rewriting logic in K extends the one in RWL by allowing
for overlapping rules which overlap on parts that are not changed by these rule (on
“read-only” parts). Such an extension is needed, e.g., whentwo threads read the store
at the same time.

As an extension of the rewriting mechanism in RWL, the rewriting in K allows for the
application of an arbitrary number of rewriting rules in a step. However, it does not
constrain the user to use a “maximal parallel” rewriting like in the case of P-systems.
Such an option may be handled at the meta-level by selecting an appropriate strategy for
applying the rules. Actually, there is little evidence thata “maximal parallel” strategy is
present in the living cells - it is more like a hypothesis to keep the evolution simpler and
to find results in the theoretical model. We see here another incarnation of the classical
dichotomy between synchronous and asynchronous systems: the latter are more suited
for real applications, while the former are easier to understand.

4.3 Variations of transition P-systems

Object movement. We present a few variations of the object movement rules found
in the literature (and included in the survey [22]), then we describe their associated rules
in K.

• (deterministicin) In this variant, one usesinj instead of a simplein to indicate
that an object goes into the internal membranej. Its K-translation is

〈| u

vh

〈| ·
v1

|〉j1 . . . 〈| ·
vk

|〉jk
|〉h ·

vo

wherevh, vi, vo are as above andv1, . . . , vk are the objects inv that go into the
internal membranesj1, . . . , jk, respectively.

• (polarities) One can use classes of membranes with polarities, say+/0/−. The
newly created objects may have+/0/− polarities as well and those with+/−
polarities go into internal membranes with opposite polarities, while those with 0
polarity may stay or goes outside. This is a case in between the above two extreme
alternatives: complete freedom to go in any internal membrane and precise target

Defining and Executing P-systems with Structured Data in K 415

for each object. It is, therefore, easy to provide in K definitions for the two cases
above. There are various ways to add algebraic structure forpolarities. For exam-
ple, one way pair each datum and each membrane label with a polarity; in the case
of data we write the polarity as a superscript, e.g.,a+ or a−, while for the mem-
branes we write it as a superscript of the membrane, e.g.,〈| u |〉+h or 〈| u |〉−h . The
membrane polarity may be changed, as well. For example, to describe that in the
presence of objectsu the polarity is changed from + to− one can use the K rule

〈| u |〉+h → 〈| u |〉
−
h or, equivalently, 〈| u |〉

+
−

h

• (arbitrary jumps) In this variant, one can directly move an object into any other
membrane. The rule, written as[hu]h → [h′v]h′ . To represent this rule in K we use
explicit rules for matching the membranes at different levels (the notation〈|∗ ∗|〉
means a match in any recurrently included cell, not only in the current one):
∗ if the membranes are not contained one into the other, then

〈| 〈|∗ u

·
∗|〉h 〈|∗ ·

v

∗|〉h′ |〉

∗ if the jump is into an enclosed membrane, then

〈| u
·
〈|∗ ·

v

∗|〉h′ |〉h

∗ if the jump is into an outside membrane, then

〈| ·
v

〈|∗ u

·
∗|〉h |〉h′

Instances of this rule capture the particular cases ofin∗/out∗, notation used in
P-systems to indicate a movement into an elementary/skin membrane.

Membrane permeability. In the standard setting, a membrane is passive (label 1)
and the specified objects can pass through it. The membrane can be dissolved (label
0), as well. One can add impenetrable membranes (label 2), aswell. The status of the
membranes may be dynamically changed as a side-effect of applying reaction rules.

This case is similar to the case of polarities: One can use pairs (h, i) to represent the
membraneid and its permeability level. The rules are simple variationsof the basic
P-systems evolution rules and may be easily handled in K.

Catalysts. The role of catalysts may be viewed in two opposite ways: (1) either they
may be seen as a sine-qua-non ingredient for a reactiona→ b to take place; or (2) they
may be seen as a way to control the parallelism, by restricting a free reactiona → b to
the number of occurrences of the catalyst. In a further extension, catalysts may move
from a membrane to another, or may change their state (each catalyst is supposed to
have a finite number of isotopic forms).

Catalysts are just objects, hence the translation in K is straightforward.

416 Defining and Executing P-systems with Structured Data in K

Rules with priorities. Capturing various control mechanisms on applying the rulesis
a matter of strategies. Strategies are commonly held separate of rules in many rewriting
approaches. One important way to restrict the maximal parallelism convention is to
apply the rules according to their priorities. In a strong version, only the rule with the
highest priority applies; in a weak version, when all possible applications of the highest
priority rule have been resolved, a next rule with less priority is chosen, and so on.

In the current implementation of P-systems over K and Maude,priorities are handled
at Maude “meta-level” and using the corresponding priorityalgorithm to capture a P-
system maximal parallel step. (K has not developed particular strategies and uses the
strategies inherited from Maude.)

Promoters/inhibitors. The presence of promoters/inhibitors may be seen as addi-
tional context for rules to apply. In the case of promoters, areaction rulel → r in
membraneh applies only if the objects in a promoter setz are present in the solution
(they should be different from those inl):

〈| l
r

z |〉h

The case of inhibitors is opposite: in the presence of the objects inz the rule cannot
apply. The case of inhibitors requires a K rule with a side condition

〈| l
r

z |〉 where z * x

Complex side condition like the above are handled by means ofconventional conditional
rewrite rules in our Maude implementation of K.

Border rules. Border rules are particular object evolution rules of the following type
xu[ivy → xu′[iv

′y. They allow to test and modify the objects from two neighboring
regions. Such a rule may be represented in K by

x u

u′

〈| v

v′
y |〉

5 P-systems as communicating systems (symport/antiport
P-systems)

This type of P-systems was introduced in [19]. In this variant, the environment is con-
sidered to be an inexhaustible source of objects of any type.The evolution rules are
called symport/antiport rules and only move the objects through the membranes (they
do not create or destroy objects).

Defining and Executing P-systems with Structured Data in K 417

Basic symport/antiport P-systems. A symport/antiport P system, of degreem ≥ 1,
is formally defined by a tuple

Π = (V, T, µ, w1, . . . , wm, E, R1, . . . , Rm, io),

where: (1)V is an alphabet ofobjects; (2) T ⊆ V is the terminal alphabet; (3)µ
is a membrane structure (with the membranes bijectively labeled by natural numbers
1, . . . , m); (4) w1, . . . , wm are multisets overV associated with the regions1, . . . , m of
µ, represented by strings fromV ∗; (5) E ⊆ V is the set of objects which are supposed
to appear in an arbitrarily large number of copies in the environment; (6)R1, . . . , Rm

are finite sets of symport and antiport rules associated withthe membranes1, . . . , m:

• a symport rule is of the form(x, in) or (x, out), wherex ∈ V +, with the meaning
that the objects specified byx enter, respectively exit, the membrane, and

• an antiport rule is of the form(x, in; y, out), wherex, y ∈ V +, which means that
x is taken into the membrane region from the surrounding region and the multiset
y is sent out of the membrane;

(7) io is the label of the output membrane, an elementary one inµ.

With the symport/antiport rules one can associatepromoters(x, in)|z , (x, out)|z , (x, out;
y, in)|z, or inhibitors(x, in)|¬z , (x, out)|¬z , (x, out; y, in)|¬z, wherez is a multiset of
objects – such a rule is applied only ifz is present, respectively not present.

Starting from theinitial configuration, which consists ofµ andw1, . . . , wm, E, the sys-
tem passes from one configuration to another by applying the rules from each setRi in
a non-deterministic and maximally parallelway.18 A sequence of transitions is called a
computation; a computation issuccessfulif and only if it halts. With a successful com-
putation we associate aresult, in the form of the number of objects fromT present in
membraneio in the halting configuration.

Example. An example is presented in Fig. 5.2. It describes how symport/antiport P-
systems may simulate counter machines – it is well known thatcounter machines with
at least 2 counters are computationally universal, see [11]. A counter machine uses a
finite number of counters and a program consisting of labeledstatements. Except for
the begin and halt statements, the other statements performthe following actions: (1)
increase a counter by one, (2) decrease a counter by one, or (3) test if a counter is zero.
For the simulation in Fig. 5.2, one uses an equivalent definition of counter machines
where the statements are of one of the following two types:

(a) l1 : (add(r), l2, l3) (add 1 tor and nondeterministically go tol2 or l3)
(b) l1 : (sub(r), l2, l3) (if r is not 0, subtract 1 and go tol2, else go tol3)

18We recall that the environment is supposed inexhaustible, at each moment all objects fromE are available
in any number of copies we need.

418 Defining and Executing P-systems with Structured Data in K

1 l0 E = {ar|1 ≤ r ≤ m} ∪ {l, l′, l′′, l′′′, liv|l ∈ B}
for l1 : (add(r), l2, l3):
- (l1, out; arl2, in)
- (l1, out; arl3, in)
for l1 : (sub(r), l2, l3):
- (l1, out; l′1l

′′
1 , in)

- (l′1ar, out; l′′′1 , in)
- (l′′1 , out; liv1 , in)
- (liv1 l′′′1 , out; l2, in)
- (liv1 l′1, out; l3, in)
for lh : halt:
- (lh, out)

Fig. 5.2 A “symport/antiport” P system.

The simulation works as follows: The statement to be next executed is in the (unique)
cell, while the others stay outside. At each step, the current statement leave the cell
and the one to be next executed goes inside the cell. During this process, the counter
associated to the statement goes updated. The processing ofa type (b) statement is
slightly more complicate as a trick is to be used to check if the counter is zero, see [22].

Basic symport/antiport P-systems in K. The previous representation in K of transi-
tion P-systems and their variations almost completely covers this new type of P-systems.
What is not covered is the behavior of the environment. The K rule is actually an equa-
tion

〈| x |〉env = 〈| x |〉env x

Variations of symport/antiport P-systems. Most of the variations used for transition
P-systems can be used here, as well.

6 P-systems with active membranes

The third main class of P-systems brings an important additional feature: the possibility
to dynamically change the membrane structure. The membranes can evolve themselves,
either changing their characteristics or getting divided.

6.4 Basic P-systems with active membranesA P-system with active membranes
[21] is formally defined by a tuple

Π = (O, H, µ, w1, ..., wm, R)

where: (1)m ≥ 1 (the initial degree of the system); (2)O is the alphabet of objects; (3)
H is a finite set of labels for membranes; (4)µ is a membrane structure, consisting ofm

Defining and Executing P-systems with Structured Data in K 419

membranes having initially neutral polarizations, labeled (not bijectively) with elements
of H ; (5) w1, . . . , wm are strings overO, describing the multisets of objects placed in
them regions ofµ; (6) R is a finite set of developmental rules, of the following forms:

• (a) object evolution rules: forh ∈ H, e ∈ {+,−, 0}, a ∈ O, v ∈ O∗,

[ha→ v]eh

• (b) “in” communication rules: forh ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O,

a[h]e1

h → [hb]e2

h

• (c) “out” communication rules: forh ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O,

[ha]e1

h → [h]e2

h b

• (d) dissolving rules: forh ∈ H, e ∈ {+,−, 0}, a, b ∈ O,

[ha]eh → b

• (e) division rules (elementary membranes, only): forh ∈ H, e1, e2, e3 ∈ {+,−, 0},
a, b, c ∈ O

[ha]e1

h → [hb]e2

h [hc]e3

h

The objects evolve in the maximally parallel manner, while each membrane can be
involved in only one rule of types (b)-(e). More precisely, first the rules of type (a) are
used, and then the other rules.

The label setH has been specified because it is allowed to change the membrane labels.
Notice that one uses a dictionary of rules, each label inH coming with its own set of
rules. For instance, a division rule can be of the more general form

• (e’) general division: forh1, h2, h3 ∈ H, e1, e2, e3 ∈ {+,−, 0}, a, b, c ∈ O

[h1a]e1

h1
→ [h2b]

e2

h2
[h3c]

e3

h3

One can consider variations as the possibility of dividing membranes in more than two
copies, or even of dividing non-elementary membranes. Therefore, in P-systems with
active membranes the membrane structure evolves during thecomputation not only by
decreasing the number of membranes by dissolution, but alsoincreasing it by division.

6.5 Basic P-systems with active membranes in KExcept for membrane division,
P-systems with active membranes are similar to transition P-systems, hence we can
borrow the previous translation in K. However, for the sake of clarity, we prefer to give
the K-representation for the full set of rules (a)-(e). A membrane with polarity is denoted
by pairs(h, e) with h ∈ H ande ∈ {+,−, 0}.

420 Defining and Executing P-systems with Structured Data in K

• object evolution rules:[ha→ v]eh (h ∈ H, e ∈ {+,−, 0}, a ∈ O, v ∈ O∗)

〈| a
v

|〉eh

• “in” communication rules:a[h]e1

h → [hb]e2

h (h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O)

a

·
〈| ·

b

|〉
e1
e2

h

• “out” communication rules:[ha]e1

h → [h]e2

h b (h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O)

〈| a
·
|〉

e1
e2

h ·
b

• dissolving rules:[ha]eh → b (h ∈ H, e ∈ {+,−, 0}, a, b ∈ O)

L a x Me
h → b x

• division rules for elementary membranes:[ha]e1

h → [hb]e2

h [hc]e3

h (h ∈ H, e1, e2, e3 ∈
{+,−, 0}, a, b, c ∈ O)

L a Me1

h → L b Me2

h L c Me3

h

i
h a

i h2
h1

b

i h1 h2
a

i
h1 h2@h2

u

@h2
u

i
h1

i
h1

h2

u
h2

gemmation

i
h a

i h1 h2
a

i
cb

h1 h2

dissolution

creation

divide

merge

b
i

endocytosys

exocytosys

Fig. 6.3 Membrane handling operations.

6.6 Variations of P-systems with active membranes

Membrane creation. This rule isa → [hv]h, i.e., after its application a new mem-
brane is inserted into the system. The rules in the new membrane depend onh and they
are taken from a dictionary. The K rule is

a→ L v Mh

Defining and Executing P-systems with Structured Data in K 421

Merging of membranes. This rule is [hx]h[h′y]h′ → [h′′z]h′′ , allowing to merge
the contents of two neighboring membranes (the rules for[h′′ ..]h′′ are taken from a
dictionary). The K rule is

L x Mh L y Mh′ → L z Mh′′

Split of membranes. This operation is opposite to merge. Its format is[h′′z]h′′ →
[hx]h[h′y]h′ and the K rule is

L z Mh′′ → L x Mh L y Mh′

One appealing version is to put into a membrane the objects ofa given type and in the
other the remaining ones.

Endocytosys and exocytoses.Endocytosys is a rule[hx]h[h′]h′ → [h′ [hy]h]h′ , i.e., in
one step a membrane and its contents enter into a neighboringmembrane. The K rule is

L x Mh

·
〈| ·

L y Mh

|〉h′

Gemmation. One can encapsulate into a new membrane[@h]@h a partu of the so-
lution to be carried to membrane[h]h. The new membrane[@hu]@h travels through
the system, being safe for its contents. By convention, it travels with the speed of one
membrane per clock cycle following the shortest path towards the destination.

The final result may be described as in the case of general object jumps. What is dif-
ferent here is the step-by-step journey of[@hu]@h. This can be done using the shortest
path fromh′ to h in the tree associated to this membrane system.19 The details are left
to the reader.

7 Implementation, experiments

The intractability of P-systems with plain objects. While P-systems is a model with
massive parallelism, its huge potential is not fully exploited by current approaches due
to the lack of object structure.20 The illustrating example of computingn2 with the P-
system in Fig. 3.1(b) is not a fortunate one. For instance, torepresent 999 one needs 999
objects in the membrane and the computation ends up with 998001 objects in the final
region; however, during computation an exponential mechanism to record the number of
steps is used and in an intermediary soup there are more than2999 objects, significantly

19One does not consider the complicated case when the deliverygets lost into the system due to a reconfig-
uration of the membrane structure.

20A few P-systems with particular structured objects (strings, conformons) are presented in [20, 12].

422 Defining and Executing P-systems with Structured Data in K

more than the atoms in the Universe.21 There are other sophisticated representation
mechanisms in cells which may be used to achieve fast and reliable computations of
interest for cells themselves. As shown below, with structured objects we break ground
and achieve fast computations for P-systems with structured objects.

A K/Maude implementation. We have developed an application for running P-systems
using our embedding of P-systems in K and the implementationof K in Maude (Maude
[10] can be downloaded at http://maude.cs.uiuc.edu/). Theapplication can be accessed
online at

http://fsl.cs.uiuc.edu/index.php/Special:MaudeStepp erOn
line
One can choose the examples in the p-system directory. The application allows to run
a P-system blindly, or in an interactive way; another optionis to ask for displaying the
transition graph. (The options for interactive running or graph display make sense for
small examples, only.)

Results: structured vs. unstructured objects. We have performed a few experi-
ments, both with plain, unstructured objects and with structured ones.

For the former case, we implemented the P-system in Fig. 3.1(b). (We have already
commented on its intractability above.) We run experimentson our server with the fol-
lowing constraints: up to 2 minutes and using no more than 500MB of RAM. With
these constraints, we were able to computen2, but only up ton = 18. The results are
presented in Table 7.3(a).

For the latter case (structured objects) we limited ourselves to natural numbers and
run two experiments with P-systems for computing factorialfunction and for looking
for prime numbers using Eratosthenes sieve. In both cases, we were able to run large
experiments: in the first case, we were able to compute3000! (a number with 12149
digits) within the given constraints; in the second case, all prime numbers less than 1500
where found in no more than 1 minute. The results are collected in Table 7.3(b),(c). The
transition graph for the example with prime numbers up ton = 10 is displayed in
Fig. 7.4.

The P-systems for the last two examples are flat, the computation being similar to that
used inΓ-programs. It is possible to describe P-systems with more membranes for this
problem and to find the resulting speedup, but this is out of the scope of the current
paper.

21The Universe is estimated to4 × 1079 hydrogen atoms, while2999 is roughly10300 .

Defining and Executing P-systems with Structured Data in K 423

square time(ms) rewritings parallel steps

6 11 2316 13

10 123 20012 21

15 3882 562055 31

18 32294 4463244 37

19 failure

(a)

factorial time(ms) no rew. parallel steps

10 0 93 4

100 8 744 7

1000 545 7065 10

3000 6308 21079 12

3500 failure

(b)

primes time(ms) no rew. parallel steps

10 1 156 2

100 33 16007 6

1000 19007 2250684 14

1500 50208 5402600 15

2000 failure

(c)

Table 7.3 Runs for P-systems with and without data structure on objects.

8 Related and future work, conclusions

A similar approach to membrane computing via rewriting logic was developed by Lu-
canu and his collaborators in a series of papers, including [2–5]. The focus in the cited
papers was to use rewriting logic to study the existing P-systems, while our approach
is more on exploiting the relationship between P-systems and the K framework for en-
riching each with the strong features of the other.

K was designed as a framework for defining programming languages and has powerful
mechanisms to represent programs via its list structures. Our embedding of P-systems
in K suggests to include acontrol nucleusin each membrane. The role of this structure it
to take care of the rules which are to be used in the membrane. Anucleus generates a set
of rules for the next (nondeterministic, parallel maximal)step. When the computation
step is finished the rules are deleted and the nucleus produces a new set of rules to be
used in the next computation step, and so on. This way, one gets a powerful mechanism

424 Defining and Executing P-systems with Structured Data in K

Fig. 7.4 The graph of computing the prime numbers up to 10.

for controlling the evolution of P-systems, narrowing their inherent nondeterminism and
opening a way to a better understanding of their behavior.

The classical model of P-systems uses a fixed set of rules for each membrane, so a sim-
ple nucleus program may be used to generate this set of rules at each step. One can think
at multiple possibilities for these nucleus programs – thanks to the structured objects,
any program written in a usual programming language may be used. The embedding of
P-systems in K described in this paper naturally extends to this new type of P-systems
and may be used to get a running environment for them.

Bibliography

[1] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J.D. Watson:Molecular
Biology of the Cell, 3rd ed. Garland Publishing, New York, 1994.

[2] O. Andrei, G. Ciobanu, and D. Lucanu: Structural Operational Semantics of P Sys-
tems. In:Proc. Workshop on Membrane Computing 2005, LNCS 3850, Springer
2006, 31–48.

[3] O. Andrei, G. Ciobanu, and D. Lucanu: Expressing ControlMechanisms of Mem-
branes by Rewriting Strategies. In:Proc. Workshop on Membrane Computing
2006, LNCS 4361, Springer 2006: 154–169

[4] O. Andrei, G. Ciobanu, and D. Lucanu: Operational Semantics and Rewriting
Logic in Membrane Computing.Electr. Notes Theor. Comput. Sci.156 (2006),
57–78.

[5] O. Andrei, G. Ciobanu, and D. Lucanu: A rewriting logic framework for op-
erational semantics of membrane systems.Theoretical Computer Science, 373
(2007), 163–181.

[6] J.-P. Banatre, A. Coutant, and D. Le Metayer: A Parallel Machine for Multiset
Transformation and Its Programming Style.Future Generation Computer Systems,
4 (1988), 133–144.

Defining and Executing P-systems with Structured Data in K 425

[7] G. Berry and G. Boudol: The Chemical Abstract Machine.Theoretical Computer
Science, 96 (1992), 217–248.

[8] L. Cardelli: Brane Calculi. In:Proc. Computational Methods in Systems Biology,
LNCS 3082, Springer 2005, 257–278.

[9] G. Ciobanu, G. Paun, G. Stefanescu: P Transducers.New Generation Computing,
24 (2006), 1–28.

[10] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and J. F.
Quesada: Maude: specification and programming in rewritinglogic. Theoretical
Computer Science, 285 (2002), 187–243.

[11] M. Davis, R. Sigal, and E.J. Weyuker.Computability, Complexity, and Languages.
Second Edition: Fundamentals of Theoretical Computer Science. Morgan Kauf-
mann, 1994.

[12] P. Frisco. The Conformon-P System: A Molecular and CellBiology-Inspired Com-
putability Model.Theoretical Computer Science, 312 (2004), 295–319.

[13] M. Hills and G. Rosu: KOOL: An Application of Rewriting Logic to Language
Prototyping and Analysis. In:Proc. RTA 2007, LNCS 4533 Springer 2007, 246–
256.

[14] M. Hills, T. Serbanuta, and G. Rosu: A Rewrite Frameworkfor Language Defi-
nitions and for Generation of Efficient Interpreters.Electr. Notes Theor. Comput.
Sci, 176, 4 (2007), 215–231.

[15] J. Meseguer: Conditioned Rewriting Logic as a United Model of Concurrency.
Theoretical Computer Science96 (1992), 73–155.

[16] P. Meredith, M. Hills, and G. Rosu:A K Definition of Scheme. Technical report
UIUCDCS-R-2007-2907, October 2007.

[17] R. Milner: A Theory of Type Polymorphism in Programming.J. Computer System
Sciences17(3) (1978), 348–375

[18] R. Milner: Communication and concurrency. Prentice-Hall, 1989.
[19] A. Paun and G. Paun: The power of communication: P-systems with symport/antiport.

New Generation Computing, 20 (2002), 295–306.
[20] G. Paun: Computing with membranes.Journal of Computer and System Sciences,

61 (2000), 108–143.
[21] G. Paun: P Systems with Active Membranes: Attacking NP-Complete Problems.

Journal of Automata, Languages and Combinatorics, 6 (2001), 75–90.
[22] G. Paun:Introduction to Membrane Computing. 12th Estonian Winter School in

Computer Science, 2007.
[23] G. Rosu:K: A Rewriting-Based Framework for Computations – Preliminary ver-

sion. Technical Report UIUCDCS-R-2007-2926, Department of Computer Sci-
ence, University of Illinois, 2007. Previous versions published as technical reports
UIUCDCS-R-2006-2802 in 2006, UIUCDCS-R-2005-2672 in 2005. K was first
introduced in the context of Maude in Fall 2003 as part of a programming language
design course (report UIUCDCS-R-2003-2897).http://fsl.cs.uiuc.edu/k .

[24] URL: The Web Page of Membrane Computing: http://ppage.psystems.eu/

Translating Multiset Tree Automata into P Systems

———————————————
José M. Sempere

Universidad Politécnica de Valencia,
Departamento de Sistemas Informáticos y Computación,
Camino de Vera s/n. 46022 Valencia, Spain
jsempere@dsic.upv.es

In this work we propose a translation scheme to obtain P systems with mem-
brane creation and division rules from transitions of Multiset Tree Automata
(MTA).

1 Introduction

The relation between membrane structures and Multiset TreeAutomata (MTA) has been
explored in previous works. So, in [11] we introduced the formal model of Multiset Tree
Automata, and in [6] this model was used to calculate editingdistances between mem-
brane structures. A method to infer multiset tree automata from membrane observations
was presented in [12], while in [13] different families of membrane structures were
characterized by using multiset tree automata.

In this work we propose a translation scheme to obtain membrane rules from MTA tran-
sitions. The advantages of this approach are clear so we can implement a computer tool
to automatically obtain membrane rules (i.e. simple P systems) from a set of trees that
model the desired behavior of the membrane structures according to [12]. The structure
of this work is the following: first we give basic definitions and notation for tree lan-
guages, P systems and multiset tree automata. Then, we propose a translation scheme
to obtain membrane rules from MTA transitions. We analyze the correctness and effi-
ciency of the proposed scheme. In the last section, we give some guidelines for future
research.

2 Notation and definitions

In the sequel we provide some concepts from formal language theory, membrane sys-
tems and multiset processing. We suggest the books [10], [8]and [2] to the reader.

Multisets. First, we provide some definitions from multiset theory as exposed in [14].

428 Translating Multiset Tree Automata into P Systems

Let D be a set. A multiset over D is a pair〈D, f〉 wheref : D −→ N is a function.
Suppose thatA = 〈D, f〉 andB = 〈D, g〉 are two multisets, then the substraction of
multisetB from A, denoted byA⊖B, is the multisetC = 〈D, h〉 where for alla ∈ D
h(a) = max(f(a) − g(a), 0). The sum ofA andB is the multisetC = 〈D, h〉, where
for all a ∈ D h(a) = f(a) + g(a), denoted byA⊕B. We say thatA is emptyif for all
a ∈ D, f(a) = 0, andA = B if the multiset(A⊖B)⊕ (B ⊖A) is empty.

The size of a multisetM is the number of elements that it contains and it is denoted
by |M | (observe that we take into account the multiplicities of every element). We
are specially interested in the class of multisets that we call bounded multisets. They
are multisets that hold the property that the sum of all the elements is bounded by a
constantn. Formally, we denote byMn(D) the set of all multisets〈D, f〉 such that∑

a∈D f(a) = n (observe that, in this case,〈D, f〉 should be finite).

A concept that is quite useful to work with sets and multisetsis theParikh mapping.
Formally, a Parikh mapping can be viewed as the applicationΨ : D∗ → Nn whereD =
{d1, d2, · · · , dn}. Given an elementx ∈ D∗ we defineΨ(x) = (#d1(x), · · · , #dn

(x))
where#dj

(x) denotes the number of occurrences ofdj in x, 1 ≤ j ≤ n. Finally, in the
following, we work with strings representing multisets. So, the multiset represented by
x is the multiset with elements that appear inx and multiplicities according toΨ(x).

P systems. We introduce basic concepts from membrane systems taken from [8]. A
transitionP system of degreem is a construct

Π = (V, T, C, µ, w1, · · · , wm, (R1, ρ1), · · · , (Rm, ρm), i0),

where:

• V is an alphabet (theobjects),

• T ⊆ V (theoutput alphabet),

• C ⊆ V , C ∩ T = ∅ (thecatalysts),

• µ is a membrane structure consisting ofm membranes,

• wi, 1 ≤ i ≤ m, is a string representing a multiset overV associated with the region
i,

• Ri, 1 ≤ i ≤ m, is a finite set ofevolution rulesoverV associated with theith
region andρi is a partial order relation overRi specifying apriority.
An evolution rule is a pair(u, v) (or u→ v) whereu is a string overV andv = v′

or v = v′δ wherev′ is a string over

{ahere, aout, ainj
|a ∈ V, 1 ≤ j ≤ m}

andδ is a symbol not inV that defines themembrane dissolving action. From now
on, we denote the settar by {here, out, ink |1 ≤ k ≤ m},

Translating Multiset Tree Automata into P Systems 429

• i0 is a number between 1 andm and it specifies theoutputmembrane ofΠ (in the
case that it equals to∞ the output is read outside the system).

The language generated byΠ in external mode (i0 = ∞) is denoted byL(Π) and it is
defined as the set of strings that can be defined by collecting the objects that leave the
system by arranging them in the leaving order (if several objects leave the system at the
same time then permutations are allowed). The set of vector numbers that represent the
objects in the output membranei0 is denoted byN(Π). Obviously, both setsL(Π) and
N(Π) are defined only forhalting computations.

Many kinds of rules have been proposed in P systems for creation, division and mod-
ification of membrane structures. There have been several works in which these rules
have been proposed or employed for different purposes (see,for example, [1,7–9]).

In the following, we enumerate two kinds of rules which are able to modify the mem-
brane structure, according to [1]

1. Division: [ha]h → [h[h1a1]h1 [h2a2]h2 · · · [hp
ap]hp

]h. The objecta in regionh is
transformed into objectsa1, a2, · · · , ap. Then,p new regions are created inside
h with labelsh1, h2, · · · , hp, and the new objects are communicated to the new
regions. This rule is a generalization of the 2-division rule proposed in different
works such as [1].

2. Creation:a → [hb]h. A new region is created with labelh and the objecta is
transformed into objectb which is communicated to the new region.

The power of P systems with the previous operations and otherones (e.g.,exocytosis,
endocytosis, etc.) has been widely studied in the membrane computing area. Given that
the previous operations can modify the membrane structure of a P systemΠ during the
computation, we denote bystr(Π) the set of membrane structures (trees) that eventually
are hold byΠ during its computation. Observe that this definition was used by Freund
et al. [4], in order to define tree languages generated byΠ systems. In such case, only
the membrane structures obtained after halting were considered.

Tree automata and tree languages. Now, we introduce some concepts from tree lan-
guages and automata as exposed in [3,5]. First, let aranked alphabetbe the association
of an alphabetV together with a finite relationr in V ×N. We denote byVn the subset
{σ ∈ V | (σ, n) ∈ r}. We denote bymaxarity(V) the maximum integerk such that
Vk 6= ∅.

The setV T of trees overV , is defined inductively as follows:

a ∈ V T for everya ∈ V0

430 Translating Multiset Tree Automata into P Systems

σ(t1, ..., tn) ∈ V T wheneverσ ∈ Vn andt1, ..., tn ∈ V T , (n > 0)

and let atree languageoverV be defined as a subset ofV T .

Given the tuplel = 〈1, 2, ..., k〉 we denote the set of permutations ofl by perm(l). Let
t = σ(t1, ..., tn) be a tree overV T . We denote the set of permutations oft at first level
by perm1(t). Formally,perm1(t) = {σ(ti1 , ..., tin

) | 〈i1, i2, ..., in〉 ∈ perm(〈1, 2,
..., n〉)}.

Let N∗ be the set of finite strings of natural numbers formed by usingthe catenation as
the composition rule and the empty wordλ as the identity. Let the prefix relation≤ in
N∗ be defined by the condition thatu ≤ v if and only if u · w = v for somew ∈ N∗

(u, v ∈ N∗). A finite subsetD of N∗ is called atree domainif:

u ≤ v wherev ∈ D impliesu ∈ D, and

u · i ∈ D wheneveru · j ∈ D (1 ≤ i ≤ j)

Each tree domainD could be seen as an unlabeled tree whose nodes correspond to the
elements ofD where the hierarchy relation is the prefix order. Thus, each treet overV
can be seen as an applicationt : D → V . The setD is called thedomain of the treet,
and denoted bydom(t). The elements of the tree domaindom(t) are calledpositionsor
nodesof the treet. We denote byt(x) the label of a given nodex in dom(t).

Definition 1 Adeterministic finite tree automatonis defined by the tupleA = (Q, V, δ, F)
whereQ is a finite set of states;V is a ranked alphabet withm as the maximum integer
in the relationr, Q ∩ V = ∅; F ⊆ Q is the set of final states andδ =

⋃
i:Vi 6=∅ δi is a

set of transitions defined as follows:

δn : (Vn × (Q ∪ V0)
n)→ Q n = 1, . . . , m

δ0(a) = a ∀a ∈ V0

Given the stateq ∈ Q, we define theancestorsof the stateq, denoted byAnt(q), as the
set of strings

Ant(q) = {p1 · · · pn |pi ∈ Q ∪ V0 ∧ δn(σ, p1, ..., pn) = q}

From now on, we refer to deterministic finite tree automata simply astree automata.
We suggest [3,5] for other definitions on tree automata.

Translating Multiset Tree Automata into P Systems 431

The transition functionδ is extended to a functionδ : V T → Q∪V0 on trees as follows:

δ(a) = a for anya ∈ V0

δ(t) = δn(σ, δ(t1), . . . , δ(tn)) for t = σ(t1, . . . , tn) (n > 0)

Note that the symbolδ denotes both the set of transition functions of the automaton and
the extension of these functions to operate on trees. In addition, you can observe that
the tree automatonA cannot accept any tree of depth zero.

Multiset tree automata and mirrored trees. We extend some definitions of tree au-
tomata and tree languages over multisets. We introduce the concept of multiset tree
automaton and then we characterize the set of trees that it accepts.

Given any tree automatonA = (Q, V, δ, F) andδn(σ, p1, p2, . . . , pn) ∈ δ, we can asso-
ciate toδn the multiset〈Q∪V0, f〉 ∈ Mn(Q∪V0) wheref is defined byΨ(p1p2 . . . pn).
The multiset defined in such way is denoted byMΨ(δn). Alternatively, we can de-
fine MΨ(δn) asMΨ(p1) ⊕MΨ(p2) ⊕ · · · ⊕MΨ(pn) where∀1 ≤ i ≤ n MΨ(pi) ∈
M1(Q ∪ V0). Observe that ifδn(σ, p1, p2, . . . , pn) ∈ δ, δ′n(σ, p′1, p

′
2, . . . , p

′
n) ∈ δ and

MΨ(δn) = MΨ(δ′n) thenδn andδ′n are defined over the same set of states and symbols
but in different order (that is the multiset induced by〈p1, p2, · · · , pn〉 equals the one
induced by〈p′1p′2 . . . p′n〉).

Now, we can define amultiset tree automatonthat performs a bottom-up parsing as in
the tree automaton case.

Definition 2 A multiset tree automatonis defined by the tupleMA = (Q, V, δ,
F), whereQ is a finite set of states,V is a ranked alphabet withmaxarity(V) = n,
Q∩V = ∅, F ⊆ Q is a set of final states andδ is a set of transitions defined as follows:

δ =
⋃

1 ≤ i ≤ n

i : Vi 6= ∅

δi

δi : (Vi ×Mi(Q ∪ V0))→ P(M1(Q)) i = 1, . . . , n

δ0(a) = MΨ(a) ∈ M1(Q ∪ V0) ∀a ∈ V0

We can observe that every tree automatonA defines a multiset tree automatonMA as
follows

432 Translating Multiset Tree Automata into P Systems

Definition 3 Let A = (Q, V, δ, F) be a tree automaton. The multiset tree automaton
induced byA is defined by the tupleMA = (Q, V, δ′, F) where eachδ′ is defined as
follows:MΨ(r) ∈ δ′n(σ, M) if δn(σ, p1, p2, ..., pn) = r andMΨ(δn) = M .

Observe that, in the general case, the multiset tree automaton induced byA is non
deterministic.

As in the case of tree automata,δ′ could also be extended to operate on trees. Here, the
automaton carries out a bottom-up parsing where the tuples of states and/or symbols are
transformed by using the Parikh mappingΨ to obtain the multisets inMn(Q ∪ V0). If
the analysis is completed andδ′ returns a multiset with at least one final state, the input
tree is accepted. So,δ′ can be extended as follows

δ
′(a) = MΨ(a) for anya ∈ V0

δ
′(t) = {M ∈ δ

′

n(σ, M1 ⊕ · · · ⊕ Mn) |Mi ∈ δ
′(ti)1 ≤ i ≤ n}

for t = σ(t1, . . . , tn) (n > 0)

Formally, every multiset tree automatonMA accepts the following language

L(MA) = {t ∈ V
T |MΨ(q) ∈ δ

′(t), q ∈ F}

Another extension which can be useful is the one related to the ancestors of every state.
So, we defineAntΨ(q) = {M |MΨ(q) ∈ δn(σ, M)}.

The following two results formally relate tree automata andmultiset tree automata.

Theorem 1 (Sempere and Ĺopez, [11]) LetA = (Q, V, δ, F) be a tree automaton,
MA = (Q, V, δ′, F) be the multiset tree automaton induced byA andt = σ(t1, . . . , tn) ∈
V T . If δ(t) = q thenMΨ(q) ∈ δ′(t).

Corollary 1 (Sempere and Ĺopez, [11]) LetA = (Q, V, δ, F) be a tree automaton and
MA = (Q, V, δ′, F) be the multiset tree automaton induced byA. If t ∈ L(A) then
t ∈ L(MA).

We introduce the concept ofmirroring in tree structures as exposed in [11]. Informally
speaking, two trees are related by mirroring if some permutations at the structural level
hold. We propose a definition that relates all the trees with this mirroring property.

Translating Multiset Tree Automata into P Systems 433

Definition 4 Lett ands be two trees fromV T . We say thatt ands aremirror equivalent,
denoted byt ⊲⊳ s, if one of the following conditions holds:

1. t = s = a ∈ V0

2. t ∈ perm1(s)

3. t = σ(t1, . . . , tn), s = σ(s1, . . . , sn) and there exists〈s1, s2, . . . , sk〉
∈ perm(〈s1, s2, ..., sn〉) such that∀1 ≤ i ≤ n ti ⊲⊳ si

Theorem 2 (Sempere and Ĺopez, [11]) LetA = (Q, V, δ, F) be a tree automaton,
t = σ(t1, . . . , tn) ∈ V T ands = σ(s1, . . . , sn) ∈ V T . LetMA = (Q, V, δ′, F) be the
multiset tree automaton induced byA. If t ⊲⊳ s thenδ′(t) = δ′(s).

Corollary 2 (Sempere and Ĺopez, [11]) LetA = (Q, V, δ, F) be a tree automaton,
MA = (Q, V, δ′, F) the multiset tree automaton induced byA and t ∈ V T . If t ∈
L(MA) then, for anys ∈ V T such thatt ⊲⊳ s, s ∈ L(MA).

3 From MTA transitions to membrane rules

In this section, we propose a translation scheme to obtain P systems from MTA. The
relation between the input and the output of the scheme is showed at the end of this
section. In addition, we show that the obtained P system generates membrane structures
which can be represented by trees that the input MTA accepts.First, we provide a couple
of examples that give some intuition in the scheme that we propose later.

Example 1 Consider the multiset tree automaton with transitions:

δ(σ, aa)= q1

δ(σ, a)= q2

δ(σ, aq2)= q2

δ(σ, q1q1)= q1

δ(σ, aq2q1)= q3 ∈ F

Then, the following P system is able to produce, during different computations, a set
of membrane structures such that the set of trees induced by them are the set of trees
accepted by the MTA.

Π = ({a, b}, {a, b}, ∅, []q3, b, ∅, ∅, (Rq3, ∅), (Rq2 , ∅), (Rq1 , ∅),∞), where

Rq3 = {b→ a[q2b]q2 [q1b]q1},

434 Translating Multiset Tree Automata into P Systems

Rq2 = {b→ a[q2b]q2 ; b→ a}, and

Rq1 = {b→ aa; b→ [q1b]q1 [q1b]q1}

Observe that we have made a top-down design, in which we startby analyzing the final
states (in this caseq3) and then we obtain the ancestors of every state according with δ
by using membrane creation and membrane division.

Let us see the following example, where the number of final states is greater than one.

Example 2 Let us take the MTA defined by the following transitions

δ(σ, aa)= q1 ∈ F (1)

δ(σ, bb)= q2 ∈ F (2)

δ(σ, q2q2)= q2 ∈ F (3)

δ(σ, q1q1)= q1 ∈ F (4)

δ(σ, q2q1)= q3 ∈ F (5)

The following P system is associated to the previous MTA. Observe that we have added
a superscript to every membrane rule according to every MTA transition.

Π = ({a, b, c}, {a, b, c}, ∅, []0, c, ∅, ∅, ∅, (R0, ∅), (Rq2 , ∅), (Rq1 , ∅),∞), where

R0 = {c→ aa(1); c→ bb(2); c→ [q2c]q2 [q2c]
(3)
q2 ; c→ [q1c]q1 [q1c]

(4)
q1 ;

c→ [q2c]q2 [q1c]
(5)
q1 }

Rq2 = {c→ bb(2); c→ [q2c]q2 [q2c]
(3)
q2 }

Rq1 = {c→ aa(1); c→ [q1c]q1 [q1c]
(4)
q1 }

We propose Algorithm 1 as a translation scheme from MTA to P systems. The main step
of the proposed algorithm, is step 5 which uses a transformation ℘c overMΨ(δ). We
formally define the transformation℘c as follows:℘c(p1 · · · pk) = ℘c(p1) · · ·℘c(pk),
where

℘c(pi) =

{
pi if pi ∈ Σ0

[pi
c]pi

if pi ∈ Q

Now, we can formally prove the correctness of the proposed algorithm through the
following result.

Translating Multiset Tree Automata into P Systems 435

Algorithm 1 A translation scheme from MTA to P systems.

Input: A MTA A = (Q, Σ, δ, F)
Output: A P systemΠ = (V, T, ∅, []0, c, ∅, · · · , ∅, (R0, ρ0), · · · , (Rm, ρm), i0) such
thatstr(Π) = L(A)
Method:

1. V = T = Σ0 ∪ {c} such thatc /∈ Σ0

2. m = |Q|
3. ρi = ∅ 0 ≤ i ≤ |Q|
4. Ri = ∅ 0 ≤ i ≤ |Q|
5. For every transition inδ such thatδ(σ, p1 · · · pk) = qj

If qj ∈ F
then Add toR0 the rulec→ ℘c(p1 · · · pk)
Add toRj the rulec→ ℘c(p1 · · · pk)

6. Return(Π)

EndMethod.

Proposition 1 Algorithm 1 obtains a P systemΠ from the input MTAA such that
str(Π) = L(A).

Proof The key step in the proposed algorithm is step 5. Observe thatthe step 5, ensures
that if δ(σ, p1 · · · pk) = qj then the regionRj holds a rule such that for every statepl

in the ancestors ofqj , according to the transition, a new region[ql
c]ql

is created. On
the other hand, every symbola ∈ p1 · · · pk is created in regionRj . So, if the structure
σ(p1 · · · pk) (or any mirrored one) is reduced to the stateqj in the MTA A, the structure
℘c(p1 · · · pk) is created in the P systemΠ inside the regionRj . In addition, ifqj ∈ F
then all the (mirrored) trees reduced toqj are accepted byA, so this is the reason why
all these structures are inside the skin regionR0.

On the other hand, observe that the unique object which can create new membranes isc
which does not belong toΣ0. We have introducedc because the rest of symbols are just
leaves in the trees accepted byA. So, once any of the leaves appears, it remains in the
region as a an object that cannot evolve anymore. Finally, the objectsc disappear when
all the leaves of the trees are created.

2

Another aspect that we take under our consideration is the efficiency of the proposed
algorithm. We analyze its complexity time through the following result.

Proposition 2 Algorithm 1 runs in polynomial time with respect to the size of the input
MTAA.

436 Translating Multiset Tree Automata into P Systems

Proof Again, the main step of the proposed algorithm is step 5. Here, we make as
many operations as the number ofδ transitions. For every transition, we must evaluate
the transformation℘c which is quadratic with the size of the ancestors of every state and
the union of|Q| andΣ0. This holds a quadratic running time for Algorithm 1. 2

4 Conclusions and future work

In this work we have proposed a full translation scheme from MTA to P systems. The
proposed algorithm correctly and efficiently performs the translation task. This scheme
gives a formal proof for the relation between the structuresgenerated by the P system
with membrane creation and membrane division and the trees accepted by MTA. This
result was pointed out in previous works such as [6,11–13].

Actually, we are developing a computer tool that holds the proposed translation scheme.
This tool will help to analyze the membrane dynamics in P systems by using the results
proposed in [12]. Furthermore, we will be able to propose initial P systems based only
in the membrane structures we want to generate which will be enriched later with the
corresponding evolution and communication rules.

On the other hand, a topic which has been investigated in previous works is the relation-
ship between MTA and P systems. We can study in depth some aspects of the P systems
by only observing the membrane dynamics. This study can be achieved by characteriz-
ing different MTA classes as was proposed in [13]. We think that we must keep on this
research in order to get a complex picture of different P systems and their relations by
using only MTA.

Acknowledgements. Work supported by the Spanish Ministerio de Educación y Cien-
cia under project TIN2007-60769.

The author is grateful to the reviewers for sharp remarks andsuggestions made to this
work.

Bibliography

[1] A. Alhazov, T.O. Ishdorj.Membrane operations in P systems with active mem-
branes. In Proc. Second Brainstorming Week on Membrane Computing.TR 01/04
of RGNC. Sevilla University. pp 37-44. 2004.

[2] C. Calude, Gh. Păun, G. Rozenberg and A. Salomaa (Eds.),Multiset Processing
LNCS 2235. Springer. 2001.

[3] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi.Tree automata techniques and applications.Available on:
http://www.grappa.univ-lille3.fr/tata ,1997. release October, 1rst
2002.

Translating Multiset Tree Automata into P Systems 437

[4] R. Freund, M. Oswald, A. Păun.P systems generating trees.In Proceedings of the
5th International Workshop on Membrane Computing, WMC 2004, pp 309-319. G.
Mauri, Gh. Păun, M. Pérez-Jiménez, G. Rozenberg, A. Salomaa (Eds.) LNCS 3365,
Springer. 2005.

[5] F. Gécseg and M. Steinby.Handbook of Formal Languages, volume 3, chapter Tree
languages, pages 1–69. Springer-Verlag, 1997.

[6] D. López, J. M. Sempere.Editing distances between membrane structures. In Pro-
ceedings of the 6th International Workshop, WMC 2005, pp 326-341. R. Freund,
Gh. Păun, G. Rozenberg and A. Salomaa (Eds.). LNCS 3850, Springer. 2006.

[7] A. Păun.On P systems with active membranes. In Proceedings of the Second In-
ternational Conference on Unconventional Models of Computation (UMC’2K). pp
187-201. I. Antoniou, C.S. Calude and M.J. Dinnen (Eds.). Springer. 2001.

[8] Gh. Păun.Membrane Computing. An Introduction.Springer. 2002.
[9] Gh. Păun, Y. Suzuki, H. Tanaka, T. Yokomori.On the power of membrane division

on P systems. Theoretical Computer Science 324, 1 pp 61–85. 2004.
[10] G. Rozenberg, A. Salomaa (Eds.).Handbook of Formal LanguagesVol. 1. Springer.

1997.
[11] J. M. Sempere, D. Lpez.Recognizing membrane structures with tree automata.In

3rd Brainstorming Week on Membrane Computing 2005. RGNC Report 01/2005
Research Group on Natural Computing. Sevilla University (M.A. Gutirrez Naranjo,
A. Riscos-Nez, F.J. Romero-Campero, D. Sburlan, eds.) pp. 305-316. Fnix Editora
2005.

[12] J. M. Sempere, D. López.Identifying P rules from membrane structures with an
error-correcting approach.In Proceedings of the 7th International Workshop WMC
2006, pp 507-520. H. Jan Hoogeboom, Gh. Păun and G. Rozenberg (Eds.). LNCS
4361, Springer-Verlag. 2006

[13] J. M. Sempere, D. López.Characterizing membrane structures through multi-
set Tree AutomataIn Proceedings of the 8th Workshop on Membrane Computing
(WMC8), pp 428-437. G. Eleftherakis, P. Kefalas, Gh. Păun (Eds.). LNCS 4860,
Springer. 2007.

[14] A. Syropoulos.Mathematics of multisets.In [2] pp 347-358.

Chemical reaction simulations using
Abstract Rewriting System on Multisets with
Lattice Boltzmann Method

———————————————
Mai Umeki, Yasuhiro Suzuki

Nagoya University, Graduate School of Information Science,
Furocho Chikusa Nagoya City, 464-8603, Japan

We have proposed a deterministic approach for simulating chemical reactions,
the Deterministic Abstract Rewriting Systems on Multisets, DARMS. DARMS
is an approximate procedure of an exact stochastic method ofsimulating chem-
ical reactions. DARMS is not a stochastic method but a deterministic method,
where reactions rules are applied in maximally parallel. Thus DARMS has
good accordance with conventional P Systems with acceptable loss of chemical
accuracy. We have composed a simulation method for the reaction-diffusion-
convection model of chemical reactions by synthesizing DARMS and the Lat-
tice Boltzmann Method (LBM); LBM is a discrete expression ofthe Navier-
Stokes Equation.

1 Introduction

DARMS, a variant of conventional P System with chemical accuracy. There are two
formalisms for simulating spatially homogeneous chemicalsystem; the deterministic
approach by a set of differential equations and the stochastic approach based on a single
differential equation. The stochastic approach has a firmerphysical basis, which is based
on the master equation than the deterministic approach, butthe master equation is often
mathematically intractable. Thus there have proposed a method to make exact numerical
calculations within the framework of the stochastic formulation, such as the Gillespie
method, without having to deal with the master equation directly. However such method
requires large amount of system time on simulation. And in P Systems, for simulating
(bio)chemical systems, the MP system has been known [13] [3]. A novel method that
we propose is Deterministic Abstract Rewriting System on Multisets (DARMS), which
is a deterministic approach based on an approximate procedure of an exact stochastic
method. DARMS can produce significant gains in simulation speed with acceptable
losses in accuracy and since reaction rules are applied deterministically (not stochastic)
and maximally parallel so it has good accordance with conventional P Systems [16]
with acceptable loss of chemical accuracy.

440 Chemical reaction simulations

Reaction-Diffusion-Convectionmodel.Recently, reaction-diffusion-convection (RDC)
phenomenon, RDC in a nonequilibrium chemical reaction havebeen observed with in-
terest by reseachers. For example, the Belousov-Zhabotinskii reaction (BZ reaction) is
a typical nonequilibrium chemical reaction but also the RDCcan be observed. In order
to understand nonequilibrium phenomena, it is important tounderstand the reaction-
diffusion-convection phenomenon, however in order to model the RDC, we have to in-
tegrate the reaction-diffusion equation and the Navier-Stokes equation and it is not easy
to simulate and analyze. Thus in order to model the RDC, we integrate the DARMS
and the Lattice Boltzmann Method, LBM. LBM is a discrete expression of the Navier-
Stokes equation.

2 Abstract Rewriting System on Multisets, ARMS

An ARMS [17] is a constructΓ = (A, w, R), whereA is an alphabet,w is a multiset
present in the initial configuration of the system, andR is the set of multiset rewriting
rules.

Let A be analphabet(a finite set of abstract symbols). AmultisetoverA is a mapping
M : A 7→ N, whereN is the set of natural numbers; 0, 1, 2,. . . . For eachai ∈ A,
M(ai) is themultiplicity of ai in M , we also denoteM(ai) as[ai].

We denote byA# the set of all multisets overA, with the empty multiset,∅, defined by
∅(a) = 0 for all a ∈ A.

A multiset M : A 7→ N, for A = {a1, . . . , an} is represented by the state vector
w = (M(a1), M(a2), . . . , M(an)), w. The union of two multisetsM1, M2 : A 7→ N

is the addition of vectorsw1 andw2 that represent the multisetsM1, M2, respectively.
If M1(a) ≤ M2(a) for all a ∈ A, then we say that multisetM1 is included in multiset
M2 and we writeM1 ⊆M2.

A reaction rule roverA can be defined as a couple of multisets,(s, u), with s, u ∈ A#.
A set of reaction rules is expressed asR. A rule r = (s, u) is also represented as
r = s → u. Given a multisets ⊆, the application of a ruler = s → u to the multiset
w produces a multisetw′ such thatw′ = w − s + u. Note thats andu can also be zero
vector (empty).

Thereaction vector, νji denotes the change of the number ofai molecules produced by
one reaction of rulerj .

2.1 ARMS with chemical kinetics We modify the ARMS [21] [20] for modeling
chemical kinetics and this enables us to use experimentallyobtained reaction rates di-
rectly, similar to the derivation of the Gillespie’s “τ -leap method” [10].

Chemical reaction simulations 441

In order to handle experimental data, we employ multisets with real multiplicities; such
a multisetX : A 7→ R for A = {a1, . . . , an} is represented by the state vectorx =
(X(a1), X(a2), . . . , X(an)). X(ai) denotes the molar concentration of specieai.

Let us assume that there areN ≥ 1 molecular species{a1, ..., an}, ai ∈ A that inter-
act through reaction rulesR = {r1, ..., rm}. As the time evolution ofx unfolds from
a certain initial state, let us suppose the state transitionof the system to be recorded
by marking on a time axis the successive instantst1, t2, ... as X(tj) (j = 1, 2, ...).
We specify the dynamical state ofx(t) ≡ (X(a1(t), X(a2(t)), ..., X(aN (t))), where
X(ai(t)) is the molar concentration ofai specie at timet, t ∈ R.

Chemical kinetics. We assume that all chemical reactions take place in a well-stirred
reactor; this assumption is required due to the strong dependence of the reaction rate on
the concentration of the reagent species. We define the functionfj , called thepropensity
functionfor rj ∈ R by

fj(x) = cjhj , (51)

wherecj denotes the average probability that a particular combination of rj reactant
molecules will react in the next infinitesimal time intervaldt andhj is the number of
possible combinations of the species ofrj in dt.

fjx(t)dt means that the probability that reactionrj will occur in the next infinitesimal
time interval[t, t + dt), (j = 1, ..., m).

The time evolution ofx(t) is a jump Markov process [12] on theN -dimensional non-
negative lattice. In this case, an ARMS has amacroscopically infinitesimal time scale,
∆, where reaction rules can be applied several times simultaneously, yet since the sto-
ichiometrical change of the state during∆ is small enough, none of the propensity
functions change appreciably.

The parameter∆ corresponds toτ (small time interval) in the Gillespie’s method [10]
and it satisfies theLeap Conditiongiven below; an amount∆ that spans avery large
number of applying every reaction rulesstill satisfies the Leap Condition.

Leap Condition:We require∆ to be small enough that the change in the state during
[t, t + ∆] will be so small that no propensity function will suffer an appreciable (i.e.,
macroscopically noninfinitesimal) change in its value.

We also assume that the number of applications of each reaction rule in∆ obeys

〈P (fj(x), ∆〉 = fj(x)∆≫ 1(∀j = 1, ..., m), (52)

whereP(fj(x), ∆) is thePoissonrandom variables is the number of reactions that occur
in ∆.

442 Chemical reaction simulations

Here, let us consider the probability functionQ, defined byQ(z1, ..., zk|∆,x, t), which
means the probability, givenX(t) = x, that in the time interval[t, t + δ) exactly zj

times of rule applications orrj will occur, for eachj = 1, ..., m. Q is evidently the
joint probability density function of theM integer random variables,Zj(∆,x, t) means
the number of times, givenX(t)=x, that reaction rulerj will apply in the time interval
[t, t + ∆) (j = 1, ..., m).

If the equation (52) is satisfied, thePoissonrandom numbers will be practically indis-
tinguishable fromnormal random numbers, which are uncorrelated statistically inde-
pendent normal random variables with mean 0 and variance 1.

Then the jump Markov process can be approximated by thecontinuousMarkov process
defined by the standard form ofchemical Langevin equation(CLE).

λi =

m∑

j=1

zjνij =

m∑

j=1

fjνji =

m∑

j=1

[fj(x)∆ + (fj(x)∆)
1
2 nj]νji

=

m∑

j=1

νjifj(x)∆ +

m∑

j=1

νjif
1
2
j (x)nj∆

1
2 , (53)

wherenj is temporally uncorrelated statistically independent normal random variables.
SinceZj(∆,x, t) = P (fj(x, ∆)), it is equal tofj(x)∆, by the equation (52).

In casefj(x)∆ → ∞, (52) implies that in the partfj(x)∆ + (fj(x∆)
1
2 nj of the

equation (53) the second term becomes negligibly small compared to the first term and
λi in the limit (fj(x)∆→∞), because

λi =

m∑

j=1

zjνji =

m∑

j=1

[fj(x)∆]νji

=

m∑

j=1

νjifj(x)∆. (54)

This is the Euler formula (piecewise linear approximation)for numerically solving the
RRE. It shows how to derive the continuous and deterministicRRE of traditional chem-
ical kinetics from the stochastic method. Sinceνjifj(x) represents the stoichiometric
change in the next infinitesimal time, it can be regarded as the reaction rate ofrj , vj ,
and we obtain:

λi =

m∑

j=1

νjifj(x)∆ ≡
m∑

j=1

vj(x)∆. (55)

Chemical reaction simulations 443

In the Gillespieτ leap method, the number of applications of each rule withinτ is ran-
domly generated according to thePoissonor Normaldistribution andλi is calculated.

In the ARMS,λi is calculated by using the reaction rate given by the equation (55). As
in the numerically solving an ordinary differential equation of the formdX/dt = f(X)
by the Euler method, a leap down the stepwise time axis by∆ according toX(t+∆) =
X(t) + f(X(t))∆ will produce errors whenever the functionf changes during that∆
increment.

It is well-known that the second-order Runge-Kutta procedure can reduce these errors;
use the simple Euler method to estimate the “midpoint” valueof X during∆, and then
calculate the actual increment inX by evaluating the slope functionf at that estimated
midpoint. The midpoint value can be obtained from the expected state changeλ asx
+ λ

2 . In the Gillespie’sτ leap method, this procedure is used and it shows that this
procedure can reduce numerical errors [10].

2.2 Algorithm of DARMS In Deterministic Abstract Rewriting System on multi-
sets (DARMS), reaction rules are applied in maximally parallel and deterministic way.
Hence, the DARMS accommodates P Systems, while it has background in theoretical
chemistry [20].

Step 0(Initialization). The timet is set to 0 and the set of vectorsV = (δ1, δ2, ..., δN)
(j = 1, 2, ..., m), expressing the stoichiometric change of each species, areinitialized.
Then all inputs of the system are assigned to their respective variables,

• X(a1), X(a2), ..., X(aN) are set to the initial quantities of species;
• k1, ..., km to setm rate constants corresponding to them reactions;
• tstop to the ending instant of simulation;
• set the value of∆;

Step 1(Calculation of state change vectorΛt). According to reaction rules, stoichio-
metric change of each specieλi is calculated as well as the state change vector;Λt =
(λ1, λ2, ..., λN) is calculated, whereλi =

∑m
j=1 νjivjx(t)∆.

Step 2(System update and branching). The quantity of each speciesandt is updated, by
usingΛt and∆:

x(t) = x(t−∆) + Λt−∆,

t := t + ∆.

444 Chemical reaction simulations

If t ≥ tstop or if there are no reactions left in the reactor, the simulation is stopped and
the results are sent to the output stream. Otherwise, the simulation returns toStep 1.

In order to simulate pattern formation, we compose cellularautomata by using the
DARMS and call it Cellular Automata of Abstract Rewriting System on Multisets
(CARMS) [20]. As for the calculation of diffusion, we use conventional explicit scheme
of difference method to solve partial differential equation of diffusion and for the cal-
culation of convection, we use the Lattice Boltzmann Method[11].

2.3 Lattice Boltzmann Method (LBM) The lattice Boltzmann equation (LBE) method
is emerging as a physically accurate and computationally viable tool for simulating
laminar and turbulent flows. On the theoretical front, rigorous mathematical proof now
exists demonstrating that the lattice Boltzmann method (LBM) is a special finite differ-
ence scheme of the Boltzmann equation that governs all fluid flows (the Navier-Stokes
equation also has its basis in the Boltzmann equation).

The basic LBE for a single-component medium consists of two basic steps: collision
and advection. The particle distribution function is thermalized locally through collision
processes and advection to the closest neighboring sites occurs according to a small set
of discrete particle velocities. The LBE proposed here is the lattice Boltzmann scheme
with BGK approximation [2];

nα(x + eαδt, t + δt) = nα(x, t) − 1

τ
[nα(x, t)− n(eq)

α (x, t)] (56)

wherenα is the number density distribution function with discrete velocityeα, n
(eq)
α is

the equilibrium distribution function andτ is the relaxation time (towards equilibrium)
which determines the viscosity. The time-step size isδt, which is the time taken for the
advection process to be completed. For the sake of simplicity without losing general-
ity, we adopt the nine-velocity model. Then the equilibriumdistribution function for
isothermal field is given as

n(eq)
α = wαn[1 +

1

c2
s

(eα · u)× 1

2c4
s

(eα · u)2 − 1

c2
s

u2] (57)

in which the discrete particle velocitieseα and the weighting factorwα (α = 0,1,2,· · · ,8)
are

eα =





(0, 0) α = 0

(cos[(α− 1)π/2]), sin[(α− 1)π/2] α = 1, 2, 3, 4

(cos[(α− 4)π/4]), sin[(α− 5)π/2 + π/4] α = 5, 6, 7, 8

(58)

and

Chemical reaction simulations 445

eα =





4/9 α = 0

1/9 α = 1, 2, 3, 4

1/36 α = 5, 6, 7, 8

(59)

respectively. The sound speed iswα = 1/
√

3(δx/δt) with δx being the lattice constant
of the underlying square lattice. The macroscopic quantities, such as particle density n,
mass density ?? and mass velocityu are given by

n =
∑

α

nα (60)

ρ = mn (61)

ρu = m
∑

nαeα (62)

wherem is the molecular weight (for more detail of the LBM, refer [11]).

3 Lattice Boltzman Equations for Reaction flow

In a reacting flow, the state of the fluid at any given point in space and time can be
completely specified in terms of fluid velocity, compositionvector (either in terms of
mass fraction or concentration). We will need to develop theLBE for all these variables.
For generating a background flow, the conventional LBM sub-steps of collision (relax-
ation) and streaming (convection) are used. However for theconcentration fields, there
is an extra sub-step between collision and streaming sub-steps to account for reaction-
diffusion and convection. This is identical to the time-splitting approach used in contin-
uum methods for chemically reacting flows.

The background flow-field is obtained using the following stencil for partial pressure

pα(x + eα, t + 1) = pα(x, t) − 1

τp
[pα(x, t) − p(eq)(x,t)

α] (63)

where

p(eq)
α = wαp[1 + 3(eα · u) +

9

2
(eα · u)2 − 3

2
u2] (64)

The total pressurep(= ρc2
s) and the fluid velocity are calculated using

446 Chemical reaction simulations

p =
∑

α

pα (65)

u =
1

p

∑

α

ealphapα (66)

This is the velocity used for determining the equilibrium distribution functions in tem-
perature and concentration fields.

3.4 Concentraton fields For concentration field, there is an extra computational
sub-step, reaction and diffusion by using the DARMS and CARMS besides conven-
tional computational sub-steps of collision and advection.

Collision of chemical speciei.

Y i
α(x, t) = Y i

α(x, t)− 1

τi
[Y i

α(x, t) − Y i(eq)(x,t)
α] (67)

whereY i denotes the concentration of chemical speciei,

Y i(eq)
α = wαY i[1 + 3(eα · u) +

9

2
(eα·)u)2 − 3

2
u2] (68)

and
Y i =

∑

α

Y i
α, (69)

Relaxation time-constantτ is determined by thermal diffusivity andτi’s are determined
by the diffusivity of corresponding species.

4 Simulation of the Oregonator

The Oregonator scheme is outlined in Table 4.1: In this paper, a combination of Tyson’s
”Lo” [19] and Field-Főrsterling values [7] (TFF parameter) are used [14]:k1 : 106M−2

S−1, k2 : 2M−3S−1, k3 : 2× 103M−1S−1, k4 : 10M−2S−1, k5 : B × 2× 10−2S−1,
whereM stands for one molar, andS stands for a second.

4.5 Results of the simulation We take the non-slip boundary condition (the ve-
locities of particles which hit the wall are inverted after the collision). The condition
of the simulation is described as follows; the amount of computation steps is 20,000,
∆ = 0.01, τ = 10, 1.0 × 104, 1.0times107, the diffusion constantsD obtained by

Chemical reaction simulations 447

X, Y, H
k1→ 2W : (r1),

A, Y, 2H
k2→ X, W : (r2),

2X
k3→ A, W, H : (r3),

A, X, H
k4→ 2X, 2Z : (r4),

B, Z
k5→ 0.5Y : (r5).

Table 4.1 Oregonator

chemical experiments [14]; (cm2 / sec.) ofX, DX and Z, DZ are 1.5 × 10−5 and
DX = 0.9× 10−5.

It is assumed that the size of reactor in the CARMS is a 6cm× 6cm square, where 50
× 50 DARMSes are placed. So, the distance between DARMSes is∆x = 6

50cm. In the
chemical experiment of BZ reaction, usually a excitation point is generated by stinging
a sliver stick, which evokes oxidation reaction. In order toexpress the generation of the
excitation point, we change the concentration ofX andY are smaller, while that ofZ
is 100 times larger.

Fig. 4.1 Time evolution of chemicals: Each line composed of the difference of the time evolution
of concentration of X (top), Y (middle) and Z (bottom) in the CARMS, where, time evolution
starts from right toward left. Blue illustrates that the concentration is high, while white, low and
τ = 1.0 × 104

The results of simulation of the Oregonator illustrate thatthe CARMS with reaction, dif-
fusion and convection exhibits typical chemical wave spatial pattern of the Oregonator
on every chemical specieX , Y andZ.

Next, we change effectiveness of the convection. Since the value ofτ denotes the ef-
fectiveness, we changeτ = 10 (the effectiveness is strong),τ = 1.0 × 104 (middle)
andτ = 1.0 × 107 (weak). And we confirmed that the effectiveness of the convection
change the spatio-temporal pattern of chemical reaction (figure 4.2). When the effec-
tiveness is strong (the top line in the figure 4.2), since the convection was strong, the
reactor was well stirred and spatial patterns were excluded, but temporal patterns were
preserved. And when the effectiveness is middle (the middleline in the figure), there

448 Chemical reaction simulations

Fig. 4.2 Effectiveness of the convectionThe difference of the time evolution of concentration
of Z in the CARMS, where time evolution starts from right toward left. Blue illustrates that the
concentration is high, while white, low. The effect of convection is changed; the value ofτ denotes
the degree of effectiveness of the convection, as theτ is getting large, the effectiveness becomes
large. Each line illustrates whenτ = 10 (top),τ = 1.0× 104 (middle),τ = 1.0× 107 (bottom),
respectively

emerged spatio-temporal pattern, however, its pattern wasdifferent from the case when
the effectiveness is weak. When the effectiveness of convection is weak, it is almost
same to the system only with reaction and diffusion. We confirmed that when the effec-
tiveness of convection is weak, its pattern (the bottom linein the figure) is similar to the
ARMS with reaction-diffusion.

Bibliography

[1] S. Barkin, M. Bixon, R.M. Noyes and K. Bar-Eli, The oxidation of cerous ions by
bromate ions comparison of experimental data with computercalculations, Int. J.
Chem. Kinet. 9: 841-862. 1977.

[2] Bhatnagar, P.L., Gross, E.P., Krook, K. (1954). A model for collision processes in
gases. Phys. Rev. 94: 511.524.

[3] L. Bianco, Membrane Models of Biological Systems, Ph.D.Thesis, Univ. of Verona,
2007.

[4] R.J. Field, E. Kőrős and R.M. Noyes, Oscillation in chemical systems II, Through
analysis of temporal oscillation in the bromate-cerium-malonic acid system, J.
Am. Chem. Soc. 94, 8649-8664, 1972.

[5] R.J. Field and R.M. Noyes, Oscillations in chemical systems. IV. Limit cycle be-
havior in a model of a real chemical reaction, J. Chem. Phys. 60, 5, 1, 1877-1884,
1974.

[6] R.J. Field and M. Burger, Oscillation and Traveling Waves in Chemical Systems,
Willey, New York, 1985.

[7] R.J. Field and Horst-Dieter F̋0rsteling, On the oxybromine chemistry rate con-
stants with cerium ion in the Field-Kőoős-Noyes mechanism of the Belousov-
Zhabotinskii reaction, J. Phys. Chem. 90, 5400-5407, 1986.

Chemical reaction simulations 449

[8] D.T. Gillespie, A General Method for Numerically Simulating the Stochastic Time
Evolution of Coupled Chemical Reactions, J. Comp. Phys., 22:403-434, 1976.

[9] D.T. Gillespie, Exact Stochastic Simulation of CoupledChemical Reactions, J.
Phys. Chem. 81 (25), 2340-2361, 1977.

[10] D.T. Gillespie, Approximate accelerated stochastic simulation of chemically re-
acting systems, J. Chem. Phys, 115(4), 1716-1733, 2001.

[11] Huidan Y., L.S. Luo, S. S. Girimaji, Scalar mixinig and chemical reaction sim-
ulations using lattice boltzmann method, International Journal of Computational
Engineering Science Vol. 3, No. 1 (2002) 73-87, Imperial College Press. Boltz-
mann Method, J. Comput. Phys. 118, 329-347 1995.

[12] J. Jacod, A.V. Skorokhod, Jumping Markov Processes. Annales de l’institut Henri
Poincare (B) Probabilites et Statistiques, 32 no. 1 (1996),p. 11-67

[13] V. Manca, String rewriting and metabolism: a logical perspective, in Computing
with Bio-Molecules. Theory and Experiments, 36-60, Springer Verlag, Singapore,
1998.

[14] H. Miike, Y. Mori and T. Yamaguchi, Science of non-equilibrium Systems (in
Japanese), Kohdansya, 1997.

[15] G. Nicolis and I. Prigogine, Exploring Complexity, An Introduction, San Fran-
cisco: Freeman and Company, 1989.

[16] G. Păun, Computing with membrane, J. Comput. Systems Sci., 61(1):108-143,
Elsevier, 2001.

[17] Y. Suzuki, S. Tsumoto, and H. Tanaka, Analysis of Cyclesin Symbolic Chemical
System based on Abstract Rewriting System on Multisets. Proceedings of Interna-
tional Conference on Artificial Life V, pp. 482-489. MIT press, 1996.

[18] J.J. Tyson; P.C. Fife, Target patterns in a realistic model of the Belousov-Zhabotinskii
reaction, J. Chem. Phys., 73, 2224-2237, 1980.

[19] J.J. Tyson, A quantitative amount of oscillation, bistability, and traveling waves
in the Belousov-Zhabotinskii reaction, in: Oscillations and Traveling Waves in
Chemical Systems, R.J. Field and M.Burger, eds. 93-144, Wiley, New York, 1985.

[20] M. Umeki and Y. Suzuki, A Simple Membrane Computing Method for Simulating
Bio-Chemical Reactions, Computer and Informatics (in printing).

[21] M. Umeki and Y. Suzuki, On the simulation of the Oregonator by using Ab-
stract Rewriting System on Multisets, 2nd Coupled AnalysisForum, Feb 2-3 2007,
Hakata JAPAN, 2007.

Author index

Abdulla, Parosh Aziz, 25
Agrigoroaiei, Oana, 45
Alhazov, Artiom, 59, 71
Arroyo, Fernando, 135
Arteta, Alberto, 135

Besozzi, Daniela, 1
Beyreder, Markus, 85
Burtseva, Liudmila, 59

Cardona, Mónica, 95
Castellini, Alberto, 117
Cazzaniga, Paolo, 383
Ciobanu, Gabriel, 45
Cojocaru, Svetlana, 59
Colomer, Angels M., 95

Dı́az-Pernil, Daniel, 155
Das, Digendra K., 129
de Frutos, Juan Alberto, 135
Delzanno, Giorgio, 25
Dittrich, Peter, 209

Eleftherakis, George, 247

Faßler, Raffael, 209
Ferretti, Claudio, 383
Freund, Rudolf, 85

Gheorghe, Marian, 173, 247
Gilbert, David, 9
Gioiosa, Gianpaolo, 327
Gutiérrez-Naranjo, Miguel A., 189

Hinze, Thomas, 209
Hogeweg, Paulien, 11

Ipate, Florentin, 173

Jack, John, 227

Kearney, David, 327
Kefalas, Petros, 247
Kirkilionis, Markus, 19

Lenser, Thorsten, 209

Leporati, Alberto, 265

Manca, Vincenzo, 117, 289, 297
Margalida, Antoni, 95
Margenstern, Maurice, 71
Matsumarum, Naoki, 209
Mauri, Giancarlo, 265, 383
Muskulus, Michael, 309

Nguyen, Van, 327
Nishida, Taishin Y., 363

Obtulowicz, Adam, 371

Pérez-Jiménez, Mario J., 95
Pérez-Hurtado, Ignacio, 155
Pérez-Jiménez, Mario J., 155, 189
Păun, Andrei, 227
Pagliarini, Roberto, 297
Pescini, Dario, 383

Riscos–Núñez, Agustı́n, 155
Roşu, Grigore, 405
Rodrı́guez-Patón, Alfonso, 227
Rogozhin, Yurii, 59
Romero-Campero, Francisco J., 21
Rozenberg, Grzegorz, 23

Sanuy, Delfı́, 95
Sempere, José M., 427
Serbănuţă, Traian, 405
Shiotani, Tatsuya, 363
Stamatopoulou, Ioanna, 247
Stefănescu, Gheorghe, 405
Suzuki, Yasuhiro, 439

Takahashi, Yoshiyuki, 363

Umeki, Mai, 439

Van Begin, Laurent, 25
Verlan, Sergey, 71

Zandron, Claudio, 265
Zorzan, Simone, 297

